In case the reference is lost, there's a famous Muslim proverb: if the mountain won't come to Muhammad, then Muhammad must go to the mountain. A flipped version of this proverb has somehow also become commonly known, perhaps surpassing the correct version (in my culture at least): if Muhammad won't go to the mountain, then the mountain will come to Muhammad.
I just want to know what kind of thermometer they put into the plasma to measure the temperature. It must have been made of ice or something to not burn up.
They usually measure extreme high temperatures differently, not with thermometers based on heat expansion of materials. They measure heat radiated, not conducted.
In plain English, they look at it with a heat camera, like you see on TV they patrol borders with.
Yeah, I decided to actually bother and read the article. Thatâs why I made my edit. This sounds like a very important technical milestone for the development of fusion reactors. Hooray!
Sorry im not any sort of scientist here but i thought energy could not be created or destroyed so to get a net-positive energy out we would need to keep feeding in fuel, is this correct?
And if so, how?
Currently reading news and communicating with people around the world from the privacy of my toilet using my hand terminal. It can also understand what I am saying and excecute my spoken commands (to some extent at least). That's some Sci fi shit right there. Pun intended
Now we have the technology that I could make an e-ink reading tablet the size of a star trek TOS/TNG PADD, and it would probably have enough battery to last 6 months just because of all the extra space.
I had this thought recently watching a video about the Apple Vision Pro. If I saw some corpo in Cyberpjnk 2077 using that exact device, I wouldn't bat an eyelash.
Even if it's not commercially available in the next 10 years or so, an actual sustained fusion reaction would change the world overnight. It's crazy how close we're getting...
Probably going to happen. Proxima Fusion is eyeing early 2030s for a commercial prototype and those aren't venture capital techbros, it's a Max Planck institute spin-out. About as hard science as you can get. Wendelstein 7X has shown that the approach works, the thing exceeded all expectations (that is: It behaves exactly as computer models said it would) and scales up without nasty surprises (much unlike tokamaks) so they're done with the tech fundamentals now it's about engineering something cost competitive, think requirements such as replacement parts the reactor will regularly need not exceeding electricity market prices.
48 seconds at those temperatures is no joke, that is pretty amazing. I didnât see the article elaborate on what the current limiting factors are for pushing beyond 48 seconds. Like I wonder if itâs a hard wall, a new engineering challenge, a tweak needed, etc. this is the reactor that set the last record so they are doing something really right.
(The article touches on this bit a little) I was watching something about fusion the other day and it seems that it is super tricky to keep the magnetic field balanced in a way that keeps the plasma in a proper toroid. Not only does it need to keep the correct strength, it has to fight against random turbulence. This is critical to start the reaction, but also to maintain it.
Also, they gave some other physical limitations in the article as well:
To extend their plasma's burning time from the previous record-breaking run, the scientists tweaked aspects of their reactor's design, including replacing carbon with tungsten to improve the efficiency of the tokamakâs "divertors," which extract heat and ash from the reactor.
Basically, it's the container that has limitations as containing a pseudo-sun probably isn't easy.
According to another commenter the heat generated is 7 times that of the core of the sun. Considering we use the sun in sci fi to destroy anything that can't be destroyed by other means, controlling that level of heat seems like a real challenge
Last one I read about is just constantly and very quickly (far quicker than human abilities) adjust the magnetic field around the plasma in order to keep it stable and in place. They've been (or at least one team was) using AI to go over data and control and predict the field adjustments, because only reacting after the plasma starts to move hasn't been quick enough.
The algorithm was called the optometrist, it was paired with a human operator to more quickly converge on the correct settings for stable plasma by having the machine randomly tweak various meta-parameters, while the human would generally decide whether the current settings were "better" or "worse" than the previous pulse.
This is such a ridiculous comment. I can literally go on Amazon and buy some helium right now. You really think if that's possible, a cutting edge research lab would run out of the stuff?
Sure, it's limited and getting scarcer, but no one's running out yet.
Agreed. There's communities where these comments are fine but the science community should be pretty strict about what type of comments are allowed. Every comment section in any community just ends with the same comments.
This is the thing which makes Lemmy more annoying than reddit. Every. Fucking. Thread. Has to be this same low information teenage edgelord shit about why capitalism has ruined the color green, or whatever. It's as exhausting as it is stupid.
Half this shit has literally nothing to do with capitalism. The other 2/3 is literally shit which is the exact same or worse under the USSR/Mao. For the love of fucking God, please at least critique capitalism in a way which makes literally any sense at all and stop with this "say the line Bart" fan service.
It's fair that the constant complaining does get old, and the eat the rich shit is VERY old. But I don't see power bills getting cheaper as a result of this technology eventually becoming viable. At least not at first. Especially when in the US you have people like Warren Buffet who buys power companies and immediately raises prices by around 50% as a matter of routine.
Cheaper than renewables? 100 million degrees doesn't sound cheap, and frankly fusion power has been "coming in the next 10 years" at least since I was at school and I'm in my mid-forties.
The usual joke is that fusion is always â30 years awayâ, not 10. The reason is that fusion projects have historically faced an issue where funding is chronically below predictions
However, this past decade is seeing a number of promising changes that make fusion seem much closer than it ever has. Lawrence Livermore managed to produce net energy gain in a fusion reaction for the first time. Fusion startups are receiving historical levels of VC funding. ITER is expected to produce as much as ten times as much energy as used to start the reaction. The rise of private space infrastructure is making helium-3 mining on the moon more possible than ever before.
Or all these new companies that you now decide to charge you for power despite not actually being involved in power production, substations, or any other transmission. They exist only to drive up cost for the consumer and give a false sense of choice.
Cheaper in the long run perhaps - but how expensive is it to build?
Atomic energy is only "cheap" since the cost for the power plants is heavily paid for by tax money. For the cost of one power station you could cover a huge amount of land with solar panels.
This is apples to oranges. Fusion is not the same as fission. We simply don't know the economics of a viable fusion reactor.
However, we do know fissions cost is heavily driven by safety and regulation. It is very reasonable to assume that fusion's requirements in this area are distinctly smaller.
This is kind of my worry as well. Weâve seen fission become impractical by cost and renewables are much cheaper, so even a successful fusion generator has a high bar. I dream of controlled fusion to not just be successful, but practical
Like it has been for the past 30 years (which, I assume, was the joke here.)
If fusion research was funded adequately we'd probably have it by now, but I don't know if it's the energy lobby or what that means that it's chronically underfunded. An actually working fusion reactor design would bring about such an upheaval in the energy markets that I wouldn't be surprised if plutocrats had a hand in making sure the research receives orders of magnitude less money than it should.
Existing energy conglomerates (ie, oil and gas) probably send their army of lobbyists around the world to spread FUD about fusion. Thus minimal funding. đŞŚ
It's not limitless, you still need fuel. Especially tritium doesn't really occur naturally because of its extremely short half-life, current plans for ITER involve breeding tritium from lithium in the fusion reactor. The closest to limitless power we have is PV.
Tritium is a convenience, not a necessity. If researchers manage to build a functional fusion reactor which captures the energy, we can find substitutes.
Well according to the 1993 classic, "SimCity 2000," fusion power becomes available to build in the year 2050. Since I have no other source that provides an exact date of viability, this remians the most reliable prediction we have.
It's also just kind of how these things tend to go. I mean even the the funny international one ITER. Has had this exact issue, they keep pushing back deadlines over and over again. Which is only really surprising if you aren't familiar with the tech, it's highly complex. But it's a great example as to why this stuff happens.
I'd like to know more. How do you actually harness the energy produced by temperatures that high? Is the end goal to figure out how to sustain the reaction at lower temperatures or do we actually have ways to generate electricity from those temperatures without losing most of it to waste?
Same as with almost any other reactor: Steam running through turbines. The high temperatures are important to sustain the fusion process. The goal is that it practically self sustains itself while we just continue to feed it with hydrogen.
I think the current designs would all use radiation heat, which means infrared etc light hitting the reactor walls and a coolant (water) running through them to generate steam, and then it's the good old turbine to electricity process...
Light emitted from a plasma that hot isn't that hot itself / wouldn't heat reactor walls to the same temps.
Now this is just vibes based... But I imagine "functionally limitless high output clean energy" would probably solve the "supply side" of the "supply and demand" equation pretty quickly. More, cheaper, cleaner, energy would certainly be less expensive to the consumer than less, more expensive production.
We have a fusion reactor in the middle of our solar system solving the spicy half of the problem already. If we are having a solar heat capture problem, how is a new source of virtually unlimited power (and heat) here going to work? How is superconductivity coming along to help mitigate this?
Because the problem fusion reactors will solve isn't free energy. We already have that, like you suggest. Solar, wind, geo thermal, hydro power, oceanic tide harvesting, and to a certain extent nuclear...all of that is free energy waiting to be harnessed.
The problems it solves include packaging (think footprint for a solar farm power plant), radio activity (like fission power plants), predictability ( solar, wind, etc), and location (hydro). Fusion puts clean power plants anywhere you want them, safely and reliably.
All of these allow you to advocate for a functioning power plant to governments and citizens without any drawbacks besides costs to build and maintain. It's an easier sell than any other power in existence. It runs off of water.
...and lithium. At least the current generation. While there's plenty of deuterium in the oceans (left over from the big bang, or at least that's the best theory we've got) tritium is a completely different matter: It's extremely rare because it's not stable with quite low half-life (12.32 years). If you throw a neutron at lithium though you get helium and tritium, and deuterium+tritium fusion happens to produce neutrons. All that btw yes is a bit radioactive the radiation safety requirements of a fusion reactor are ballpark those of the radiology department in your local hospital.