Time (people have been known to have straight periods, gay periods, horny periods, ace periods, etc.)
There are probably others that we relate to kink and paraphilia.
So the very gayest person would have to be specifically defined. Which is gayer: the horniest bisexual or the average-libido gay who has absolute-zero-Kelvin interest in the other sex? Or the gay man who is totally in love with (and exclusively devoted to) his hubby and has been this way for fifty years?
Comment sections like this make me feel like I'm in a room full of crazy people, and or I eventually start to question my own sanity.
I mean sure, a spectrum is defined by at least 2 most extreme points (depending on the amount of dimensions). But like, what's stopping us form mapping two or more people to either extreme? Why can't 2 people be equally most gay or equally least gay?
If you limit the resolution of the gayness measurement, sure. You could define least gay as 0 and most gay as 5, then you have millions of people on 5. But there are infinitely many real numbers, and if there were some theoretical 100% accurate way to measure "gayness" (whatever that means) at "infinite resolution", the chance of two people being equally most gay is theoretically 0. On the other hand of the spectrum, it'd be impossible to be ENTIRELY not gay at all, so even if millions of people are very close to 0, one would be the closest.
Not only that. What if there are multiple aspects to what gay defines. Is it just how much they like the same sex, or also how many fake stories they post online? One can score a 5 on one, and a 4 on the other.
I mean it has to be a limit, a person can only be so gay. Like even if we define a spectrum as far and wide as we like. Let's say height for example. That's an infinite scale, but a human will never be a light year in height, it's just not physically possible. And once there's one human to reach the highest physical limit, what's stopping someone else from also reaching that point?
Number theory suggests that by whatever metric it's determined, there's bound to be an infinitesimal difference between two measurements. Observation leads to significant figures, not reality
Well that depends on if gayness is a continuous or discrete quantity. If gay comes in very small but distinct indivisible units, the minimum could certainly be just 1 of these units.
I think that could be possible. If sexuality were multi-dimensional and "gayness" was just a 1-D collapse of a higher dimensional space then you could pick a vector in the higher dimensional space to represent gayness, such that a few points at the extreme happen to have the same dot-product with that vector.
But then you would be defining gayness around the gymnastics of setting that up instead of something you are actually trying to estimate about people on that spectrum.
The meme saying there's a gayest person, kinda implies this. Of course it's actually nonsense in real life, all I'm trying to say is that a spectrum by definition doesn't exclude the possibility of 2 entities being on the most extreme end (doesn't really matter if we have more dimensions or just one representing gayness, all can be maxed out). If one person can someone how obtain the highest amount of gayness physically possible, how does that stop someone else from doing the same?
How is a spectrum supposed to not have a total ordering? To me saying sth is a spectrum always invokes an image of being able to map to/represent the property as an interval (unbounded or bounded) which should always give it a total ordering right?
How is a spectrum supposed to not have a total ordering?
I'm pretty sure a spectrum is always totally ordered. You can't say "this point on the spectrum holds no relation to that point", because then it's not a spectrum.
It all comes down to definitions. First off, Totally Ordered is a property of the function that compares two elements not the set you are talking about. most sets have total orderings (if the axiom of choice is true then all sets have a total ordering). With Fields and vectorspaces there is the concept of a totally ordered Field which is essentially when the total ordering is compatible with it's field operations (e.g the set of complex numbers has many total orderings, but the field of complex numbers is not an ordered field).
So it really depends on how we define the sexuality spectrum. So long as it's simply a set then it has a total ordering. But if we allow us to add and multiply the gays then depending on how we define those functions it could be impossible to order the gay field.
Also a total ordering doesn't mean that there is exactly 1 maximal element (it would need to be a strict total ordering to have that property), so we can all be the gayest.
Ig thats where most of my confusion comes from, to me saying sth is a "spectrum" always evokes sth along the lines of gay <--------------------> straight (ie one dimensional) with things mapping into this interval. But ig if you also include more than one axis in your meaning of "spectrum" there wouldn't be as straight forward of an ordering for any given "spectrum". + Like @[email protected] said technically even the 1 dimensional spectrum can have more than one order and the "obvious" one is just obvious because we are used to it from another context not because its specifically relevant to this situation.
Every large social platform has groups of people who hate each other, even lemmy. They just all have ways to keep only showing people the posts from groups they support (through defederation and only looking at specific communities, or twitter/youtube/tiktok/facebook's algorithms, etc)
I think the comparison with Lemmy is moot, since Lemmy (or the Fediverse as a whole) isn't owned by one centralized entity. Twitter quite literally has a Nazi as its owner. Sure, progressive people still have tools at their disposal to be able to use Twitter, but I think it makes sense to question why we should use such a platform.
Wouldn't it be like 9.99 into infinity? 🤔 and since the human population (at least currently living) is not infinete, then at some 9.999999 there wouldn't be anyone with a higher value?
(I don't know math)
a consequence of the axiom of choice is that every set can be given a well ordering. and well orderings always have smallest elements, but they may not have largest elements.
so there is someone who is the least gay, but there may not be a single person who is the most gay.
I'm not sure if I understand. There might not be the "fully" gay person but there is person(s) who is more gay than anyone else, thus making them gayest
The axiom of choice doesn't say one way or another whether the spectrum in "the standard order" (is there a standard definition of more/less gay?) is a well ordering, only that there is some well ordering.
yeah this is true. i should have clarified a bit better that a well ordering wouldn’t give you a “least gay” person in that sense of the word. it would be more correct to say there is a well ordering ⊰, and so there is a “⊰”-least gay person. but of course a “⊰”-least gay person could be in the middle of that spectrum.
but the number of people on earth is finite, so in fact the usual ordering is a well-ordering in this case. so i guess those two mistakes i made cancel each other out, and the axiom of choice isn’t even needed here.
you could think about it this way: one sphere and two spheres have the same “number” of points. (in the same way that there are just as many real numbers as there are real numbers in the interval (0,1).)
so, it becomes “”plausible”” that you could use one sphere to construct two spheres (because in some sense, you aren’t “adding any new points”).
but in the real world, “spheres” only have a finite number of atoms. so if we regard atoms as “points”, then it’s no longer true that one sphere and two spheres have the same number of “points”. and in some sense, this is why the sphere duplication trick doesn’t work in the real world.
it’s also worth mentioning that you have to do some pretty fucked up and unusual things in order to actually duplicate the sphere, and if you don’t allow such weird things to be done to the sphere, then it’s no longer possible to duplicate it, even with the axiom of choice.
By performing measure-preserving transformations to non-measurable sets and acting surprised when at the end of the day measure isn't preserved. I don't blame AC for that. AC only implies the existence of a non-measurable set, which is in itself not totally counter-intuitive.
This misconception is also why— for the love of fucking god— people need to stop calling autism a "spectrum". It doesn't matter if it is one, what matters is what people think that means. There is no "extremely autistic" or "a little bit autistic"— those people are referring to cognitive ability. Those kinds of people don't know the difference between autism and general intellectual disability. Autism as we "know" it is a fucking disaster of an understanding, and I will die long before we can get people to think correctly about it.
Also, the problem with people really, super wanting to be "autistic" because it makes them "special", not knowing that autism is a full-neurological phenomenon and not just "you think different". That's another huge reason why nobody actually knows what it is and that, yes, it does in fact have a finite list of symptoms/traits. x_x
Source: autistic, introspective and self-understanding, and rational