I still don't understand why this isn't a 2.5G WAN and 2.5G LAN. Is it assuming that people are going to be using it as a router on a stick with a 1G WAN?
Given the 2.5Gb port also supports PoE in, I think the idea is that you can plug this into a 2.5Gb PoE port on a seperate managed switch and that's the only connection you need; that's certainly how I would use it. WAN connections could be plugged into that switch, along with the APs, user devices, servers, etc, with them seperated using VLANs. Assuming everything was gigabit except for that 2.5Gb link to the OpenWRT Thing™, you'd be hard-pressed to saturate that 2.5Gb port and you'd still have the gigabit port completely free for... whatever.
WAN is some up-/downstream port connecting intranets remotely in my novice book. The measurement G doesn't refer to some advertisement-thingy in terms of wireless speed (but Gigabyte) - Maybe it's some form of Generation; But then I lack everything including my false base knowledge.
Additionally I have never encountered "2.5G LAN" ever before: Would you be able to shed light on my shortcomings? 2.5 x 8 is 20 Gbit. I didn't read about that size yet.
WAN would be the Internet uplink port. A 2.5G WAN port is a 2.5 gigabit Ethernet port. 2.5 gigabit and o a lesser extent 5 gigabit Ethernet are a standard that's becoming rapidly available on a lot of hardware. OP is stating that for a device shipping near the end of 2024, a new router that is shipping with only 1 GbE instead of 2.5 GbE is a problem.
Just pulled the trigger, only had European plugs in stock. I've got adapters so np. I'm getting it to replace my Raspberry Pi router that I've been using for a few years.
*Edit, I should say I'm a huge fan openWRT despite the fact that 15 years ago I managed to brick my linksys router so bad it actually caused sparks to shoot out the ethernet jacks. I flashed the wrong model firmware.
I'm fine with the looks and hardware, except I'm not upgrading again for a wifi 6 router. I'll wait till they make a 7. 7 has a couple pretty big improvements over 6.
There are use cases for this router, but please don't get the plastic clone sold by the same Chinese company that assembles the real thing. (The plastic clone costs a third, but doesn't have detachable antennas and doesn't accept mainstream OpenWRT because it uses an almost unknown CPU.)
Myself, when I need a high capability router (for me "capability" typically means "range") I turn towards a Raspberry Pi and Alfa AWUS1900 wireless card. Yes, it lacks in throughput (USB is a severe bottleneck)... but with a bit of tweaking, you can talk out to 2 kilometers if terrain allows. :)
Most of those run OpenWrt or PfSense. Assuming the hardware is well-supported by the open source software it runs, there's a argument to be made that there's no difference. There's always the risk of them using some weird chipset that won't be supported in a year's time. The only difference is that the OpenWrt One is specifically designed for OpenWrt with well-supported hardware.
how good is openwrt these days? i used it a long time ago on tp link hardware are remember it was not too good...like adding own scripts, addons etc. and then i tried stuff like ipfire,ipcop and pfsense. pfsense was so much better and now opensense is quite good.
how does current openwrt compare?
Whilst that's a nice slogan, in Electronics "open source" doesn't mean anywhere as much as it does in Software because it's generally just knowing which components go into the circuit, which is but a fraction of the work (laying out the board is a massive chunk of work, in some cases most of it, and at high enough clock speeds circuit design is an art in itself).
Mind you, I like the Orange Pi and Banana Pi guys, and the idea of an SBC designed for being an open source router is pretty appealing, though nowadays maybe pfSense would be a better choice than OpenWrt.
Finally this thing having only 2 ethernet ports + WiFi makes it little more than a regular $70+ SBC board + a box - something easy enough to put together by any technically inclined person - which isn't exactly exciting.
The very example I provided comes with an mPCI-e slot to install a WiFi card of your choosing.
Also they have SIM card slots so you can install a data SIM card and set-up a fallback configuration that switches to it if your landline internet connection goes down.
Packet loss occurs when a router has to drop some packets because the buffer to store them is running out because the link where they are supposed to go is overloaded.
Bufferbloat is the issue where you make your queues too deep, i.e. you allocate too much RAM to buffering, while the cause of the buffering still exists, so the deeper queue just fills up anyway, so you haven't improved anything, and have induced extra latency on the packets that do make it trough.
Deep buffers can help in situations where you have a step down in link speed, but only bursty and not sustained overloading of the slower output link.
The big bottleneck in router hardware is more about TCAM or HBM memory used to store the FIB of the global routing table. Since the table has grown so much the devices with less high speed memory can't hold the table anymore, and if they start swapping the FIB to normal memory your routing performance goes to shit.
So not all of your concerns seem to apply to this class of device, but of course you're right, The Register should have mentioned the RAM.
Thanks. You know a lot about hardware spec reqs in networking equipment. It always drives me crazy when buying a router because they dont seem to list this info.
Do you have any general advice for spec'ing hardware reqs for small businesses with event spaces with occasionally loads of people? How do u ensure the router can handle everyone's traffic without dropping packets?
What's the point of having 1G on WAN and 2.5G on LAN? Traffic won't hit the LAN port until it's routed to the Internet, yet the WAN port is the bottleneck.
Edit: Seems like I switch up the port speed but my point still holds as the bittleneck still exist.
The LAN and WAN ports aren't labelled as such on the device and can be configured to do anything. The 2.5Gb port can also be used to take in PoE so for a lot of people - myself included - this will be the only port that's actually used, or at least the port that will be used the heaviest. The reason, I think, that it's configured as WAN by default is so that the LAN port can be used to plug a laptop in directly without disconnecting the whole network.
It doesn't matter. Port configuration can switch around and the bottleneck is still there. Traffic with in the broadcast domain (i.e. subnet) will handled by the switch alone.
There is WiFi onboard so it can have some actual benefits, depending on design and how user access resources, but how likely you're going to saturate that 1/2.5G link? Not even you stream some 4K movies from Plex to iPhone will does that.
Local NAS, local security cameras, in-house streaming, LAN multiplayer, local torrent-like data sharing (FYI, Windows Update and more uses the local network to share update between computers by default, so it gets downloaded once and then shared internally)
Does it have enough power to handle routing (not just switching) 2.5Gb + 2.5Gb + whatever the WiFi can support? My guess is it cannot and it would have pushed the price up signifcantly to do so.
Does seem counter intuitive to me as this is squarely aimed at enthusiasts who would like to min max their home network.
Exactly this. With VLAN tagging you can plug that single 2.5Gb connection into a 48-port managed switch and effectively have up to 47 different NICs if that's what floats your boat. They'd all share the 2.5Gb but that's still more than a lot of small networks need.
Well the router I use today has 4 ports (and a built in modem for that matter, but I don’t use that).
I understand I can use a switch, but that means I’ll have to buy a switch in addition to this to replace my router.
It would be nice if they would make one with 4 or more LAN ports with at least one of them 2.5G and no WiFi. I need multiple access points to get enough coverage. The built in WiFi is useless to me since it won't integrate nicely with Unifi.
Turn it off then and use your own APs, it’s what I do in my home. I don’t have this specific router but I have a box with 2 eth ports, one goes to pppoe and the other to my home switch, where my APs are connected.
GL.inet has some LTE routers with OpenWRT on them. I haven't tried the LTE version, and the one (Shadow) I have has to be rebooted once a week, but that's a really cheap one I was trying.
The fact that this has USB type C as a option for powering it makes me very interested, but the fact that it does not have at least Wi-Fi 6E makes me not interested. So I think I will have to wait for version 2 of this.
If I remember correctly, Wi-Fi 6E was finalized in like 2021 or 2022, and it's 2024 and very close to 2025. So it should be about three years that Wi-Fi 6E has been in the wild. I only have 500 MBPS fiber anyway so I wouldn't saturate the links but I do want the six gigahertz Wi-Fi band because if I'm going to buy a new router I'm going to probably keep it for like 10 years. I think I purchased my previous router in like 2019 and I'm still using it. My router is an appliance that I only replace when the damn thing breaks pretty much.
...can I get a peer review on the amount of shade we're being given, here? I get it's their hardware but isn't it more... chosen hardware? Isn't the software also public?