Skip Navigation

🖨️ - 2024 DAY 5 SOLUTIONS - 🖨️

Day 5: Print Queue

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

56
56 comments
  • Nim

    Solution: sort numbers using custom rules and compare if sorted == original. Part 2 is trivial.
    Runtime for both parts: 1.05 ms

    proc parseRules(input: string): Table[int, seq[int]] =
      for line in input.splitLines():
        let pair = line.split('|')
        let (a, b) = (pair[0].parseInt, pair[1].parseInt)
        discard result.hasKeyOrPut(a, newSeq[int]())
        result[a].add b
    
    proc solve(input: string): AOCSolution[int, int] =
      let chunks = input.split("\n\n")
      let later = parseRules(chunks[0])
      for line in chunks[1].splitLines():
        let numbers = line.split(',').map(parseInt)
        let sorted = numbers.sorted(cmp =
          proc(a,b: int): int =
            if a in later and b in later[a]: -1
            elif b in later and a in later[b]: 1
            else: 0
        )
        if numbers == sorted:
          result.part1 += numbers[numbers.len div 2]
        else:
          result.part2 += sorted[sorted.len div 2]
    

    Codeberg repo

  • Kotlin

    Took me a while to figure out how to sort according to the rules. 🤯

    fun part1(input: String): Int {
        val (rules, listOfNumbers) = parse(input)
        return listOfNumbers
            .filter { numbers -> numbers == sort(numbers, rules) }
            .sumOf { numbers -> numbers[numbers.size / 2] }
    }
    
    fun part2(input: String): Int {
        val (rules, listOfNumbers) = parse(input)
        return listOfNumbers
            .filterNot { numbers -> numbers == sort(numbers, rules) }
            .map { numbers -> sort(numbers, rules) }
            .sumOf { numbers -> numbers[numbers.size / 2] }
    }
    
    private fun sort(numbers: List<Int>, rules: List<Pair<Int, Int>>): List<Int> {
        return numbers.sortedWith { a, b -> if (rules.contains(a to b)) -1 else 1 }
    }
    
    private fun parse(input: String): Pair<List<Pair<Int, Int>>, List<List<Int>>> {
        val (rulesSection, numbersSection) = input.split("\n\n")
        val rules = rulesSection.lines()
            .mapNotNull { line -> """(\d{2})\|(\d{2})""".toRegex().matchEntire(line) }
            .map { match -> match.groups[1]?.value?.toInt()!! to match.groups[2]?.value?.toInt()!! }
        val numbers = numbersSection.lines().map { line -> line.split(',').map { it.toInt() } }
        return rules to numbers
    }
    
  • C#

    using QuickGraph;
    using QuickGraph.Algorithms.TopologicalSort;
    public class Day05 : Solver
    {
      private List<int[]> updates;
      private List<int[]> updates_ordered;
    
      public void Presolve(string input) {
        var blocks = input.Trim().Split("\n\n");
        List<(int, int)> rules = new();
        foreach (var line in blocks[0].Split("\n")) {
          var pair = line.Split('|');
          rules.Add((int.Parse(pair[0]), int.Parse(pair[1])));
        }
        updates = new();
        updates_ordered = new();
        foreach (var line in input.Trim().Split("\n\n")[1].Split("\n")) {
          var update = line.Split(',').Select(int.Parse).ToArray();
          updates.Add(update);
    
          var graph = new AdjacencyGraph<int, Edge<int>>();
          graph.AddVertexRange(update);
          graph.AddEdgeRange(rules
            .Where(rule => update.Contains(rule.Item1) && update.Contains(rule.Item2))
            .Select(rule => new Edge<int>(rule.Item1, rule.Item2)));
          List<int> ordered_update = [];
          new TopologicalSortAlgorithm<int, Edge<int>>(graph).Compute(ordered_update);
          updates_ordered.Add(ordered_update.ToArray());
        }
      }
    
      public string SolveFirst() => updates.Zip(updates_ordered)
        .Where(unordered_ordered => unordered_ordered.First.SequenceEqual(unordered_ordered.Second))
        .Select(unordered_ordered => unordered_ordered.First)
        .Select(update => update[update.Length / 2])
        .Sum().ToString();
    
      public string SolveSecond() => updates.Zip(updates_ordered)
        .Where(unordered_ordered => !unordered_ordered.First.SequenceEqual(unordered_ordered.Second))
        .Select(unordered_ordered => unordered_ordered.Second)
        .Select(update => update[update.Length / 2])
        .Sum().ToString();
    }
    
  • Uiua

    Well it's still today here, and this is how I spent my evening. It's not pretty or maybe even good, but it works on the test data...

    spoiler

    Uses Kahn's algorithm with simplifying assumptions based on the helpful nature of the data.

    Try it here

    Data ← ⊜(□)⊸≠@\n "47|53\n97|13\n97|61\n97|47\n75|29\n61|13\n75|53\n29|13\n97|29\n53|29\n61|53\n97|53\n61|29\n47|13\n75|47\n97|75\n47|61\n75|61\n47|29\n75|13\n53|13\n\n75,47,61,53,29\n97,61,53,29,13\n75,29,13\n75,97,47,61,53\n61,13,29\n97,13,75,29,47"
    Rs   ← ≡◇(⊜⋕⊸≠@|)▽⊸≡◇(⧻⊚⌕@|)Data
    Ps   ← ≡⍚(⊜⋕⊸≠@,)▽⊸≡◇(¬⧻⊚⌕@|)Data
    
    NoPred  ← ⊢▽:⟜(≡(=0/+⌕)⊙¤)◴♭⟜≡⊣                # Find entry without predecessors.
    GetLead ← ⊸(▽:⟜(≡(¬/+=))⊙¤)⟜NoPred             # Remove that leading entry.
    Rules   ← ⇌⊂⊃(⇌⊢°□⊢|≡°□↘1)[□⍢(GetLead|≠1⧻)] Rs # Repeatedly find rule without predecessors (Kaaaaaahn!).
    
    Sorted   ← ⊏⍏⊗,Rules
    IsSorted ← /×>0≡/-◫2⊗°□: Rules
    MidVal   ← ⊡:⟜(⌊÷ 2⧻)
    
    ⇌⊕□⊸≡IsSorted Ps        # Group by whether the pages are in sort order.
    ≡◇(/+≡◇(MidVal Sorted)) # Find midpoints and sum.
    
    
  • Factor

    : get-input ( -- rules updates )
      "vocab:aoc-2024/05/input.txt" utf8 file-lines
      { "" } split1
      "|" "," [ '[ [ _ split ] map ] ] bi@ bi* ;
    
    : relevant-rules ( rules update -- rules' )
      '[ [ _ in? ] all? ] filter ;
    
    : compliant? ( rules update -- ? )
      [ relevant-rules ] keep-under
      [ [ index* ] with map first2 < ] with all? ;
    
    : middle-number ( update -- n )
      dup length 2 /i nth-of string>number ;
    
    : part1 ( -- n )
      get-input
      [ compliant? ] with
      [ middle-number ] filter-map sum ;
    
    : compare-pages ( rules page1 page2 -- <=> )
      [ 2array relevant-rules ] keep-under
      [ drop +eq+ ] [ first index zero? +gt+ +lt+ ? ] if-empty ;
    
    : correct-update ( rules update -- update' )
      [ swapd compare-pages ] with sort-with ;
    
    : part2 ( -- n )
      get-input dupd
      [ compliant? ] with reject
      [ correct-update middle-number ] with map-sum ;
    

    on GitHub

  • Dart

    A bit easier than I first thought it was going to be.

    I had a look at the Uiua discussion, and this one looks to be beyond my pay grade, so this will be it for today.

    import 'package:collection/collection.dart';
    import 'package:more/more.dart';
    
    (int, int) solve(List<String> lines) {
      var parts = lines.splitAfter((e) => e == '');
      var pred = SetMultimap.fromEntries(parts.first.skipLast(1).map((e) {
        var ps = e.split('|').map(int.parse);
        return MapEntry(ps.last, ps.first);
      }));
      ordering(a, b) => pred[a].contains(b) ? 1 : 0;
    
      var pageSets = parts.last.map((e) => e.split(',').map(int.parse).toList());
      var partn = pageSets.partition((ps) => ps.isSorted(ordering));
      return (
        partn.truthy.map((e) => e[e.length ~/ 2]).sum,
        partn.falsey.map((e) => (e..sort(ordering))[e.length ~/ 2]).sum
      );
    }
    
    part1(List<String> lines) => solve(lines).$1;
    part2(List<String> lines) => solve(lines).$2;
    
  • Haskell

    Part two was actually much easier than I thought it was!

    import Control.Arrow
    import Data.Bool
    import Data.List
    import Data.List.Split
    import Data.Maybe
    
    readInput :: String -> ([(Int, Int)], [[Int]])
    readInput = (readRules *** readUpdates . tail) . break null . lines
      where
        readRules = map $ (read *** read . tail) . break (== '|')
        readUpdates = map $ map read . splitOn ","
    
    mid = (!!) <*> ((`div` 2) . length)
    
    isSortedBy rules = (`all` rules) . match
      where
        match ps (x, y) = fromMaybe True $ (<) <$> elemIndex x ps <*> elemIndex y ps
    
    pageOrder rules = curry $ bool GT LT . (`elem` rules)
    
    main = do
      (rules, updates) <- readInput <$> readFile "input05"
      let (part1, part2) = partition (isSortedBy rules) updates
      mapM_ (print . sum . map mid) [part1, sortBy (pageOrder rules) <$> part2]
    
  • Rust

    Real thinker. Messed around with a couple solutions before this one. The gist is to take all the pairwise comparisons given and record them for easy access in a ranking matrix.

    For the sample input, this grid would look like this (I left out all the non-present integers, but it would be a 98 x 98 grid where all the empty spaces are filled with Ordering::Equal):

       13 29 47 53 61 75 97
    13  =  >  >  >  >  >  >
    29  <  =  >  >  >  >  >
    47  <  <  =  <  <  >  >
    53  <  <  >  =  >  >  >
    61  <  <  >  <  =  >  >
    75  <  <  <  <  <  =  >
    97  <  <  <  <  <  <  =
    

    I discovered this can't be used for a total order on the actual puzzle input because there were cycles in the pairs given (see how rust changed sort implementations as of 1.81). I used usize for convenience (I did it with u8 for all the pair values originally, but kept having to cast over and over as usize). Didn't notice a performance difference, but I'm sure uses a bit more memory.

    Also I Liked the simple_grid crate a little better than the grid one. Will have to refactor that out at some point.

    solution
    use std::{cmp::Ordering, fs::read_to_string};
    
    use simple_grid::Grid;
    
    type Idx = (usize, usize);
    type Matrix = Grid<Ordering>;
    type Page = Vec<usize>;
    
    fn parse_input(input: &str) -> (Vec<Idx>, Vec<Page>) {
        let split: Vec<&str> = input.split("\n\n").collect();
        let (pair_str, page_str) = (split[0], split[1]);
        let pairs = parse_pairs(pair_str);
        let pages = parse_pages(page_str);
        (pairs, pages)
    }
    
    fn parse_pairs(input: &str) -> Vec<Idx> {
        input
            .lines()
            .map(|l| {
                let (a, b) = l.split_once('|').unwrap();
                (a.parse().unwrap(), b.parse().unwrap())
            })
            .collect()
    }
    
    fn parse_pages(input: &str) -> Vec<Page> {
        input
            .lines()
            .map(|l| -> Page {
                l.split(",")
                    .map(|d| d.parse::<usize>().expect("invalid digit"))
                    .collect()
            })
            .collect()
    }
    
    fn create_matrix(pairs: &[Idx]) -> Matrix {
        let max = *pairs
            .iter()
            .flat_map(|(a, b)| [a, b])
            .max()
            .expect("iterator is non-empty")
            + 1;
        let mut matrix = Grid::new(max, max, vec![Ordering::Equal; max * max]);
        for (a, b) in pairs {
            matrix.replace_cell((*a, *b), Ordering::Less);
            matrix.replace_cell((*b, *a), Ordering::Greater);
        }
        matrix
    }
    
    fn valid_pages(pages: &[Page], matrix: &Matrix) -> usize {
        pages
            .iter()
            .filter_map(|p| {
                if check_order(p, matrix) {
                    Some(p[p.len() / 2])
                } else {
                    None
                }
            })
            .sum()
    }
    
    fn fix_invalid_pages(pages: &mut [Page], matrix: &Matrix) -> usize {
        pages
            .iter_mut()
            .filter(|p| !check_order(p, matrix))
            .map(|v| {
                v.sort_by(|a, b| *matrix.get((*a, *b)).unwrap());
                v[v.len() / 2]
            })
            .sum()
    }
    
    fn check_order(page: &[usize], matrix: &Matrix) -> bool {
        page.is_sorted_by(|a, b| *matrix.get((*a, *b)).unwrap() == Ordering::Less)
    }
    
    pub fn solve() {
        let input = read_to_string("inputs/day05.txt").expect("read file");
        let (pairs, mut pages) = parse_input(&input);
        let matrix = create_matrix(&pairs);
        println!("Part 1: {}", valid_pages(&pages, &matrix));
        println!("Part 2: {}", fix_invalid_pages(&mut pages, &matrix));
    }
    

    On github

    *Edit: I did try switching to just using std::collections::HashMap, but it was 0.1 ms slower on average than using the simple_grid::Grid... Vec[idx] access is faster maybe?

  • Rust

    While part 1 was pretty quick, part 2 took me a while to figure something out. I figured that the relation would probably be a total ordering, and obtained the actual order using topological sorting. But it turns out the relation has cycles, so the topological sort must be limited to the elements that actually occur in the lists.

    Solution
    use std::collections::{HashSet, HashMap, VecDeque};
    
    fn parse_lists(input: &str) -> Vec<Vec<u32>> {
        input.lines()
            .map(|l| l.split(',').map(|e| e.parse().unwrap()).collect())
            .collect()
    }
    
    fn parse_relation(input: String) -> (HashSet<(u32, u32)>, Vec<Vec<u32>>) {
        let (ordering, lists) = input.split_once("\n\n").unwrap();
        let relation = ordering.lines()
            .map(|l| {
                let (a, b) = l.split_once('|').unwrap();
                (a.parse().unwrap(), b.parse().unwrap())
            })
            .collect();
        (relation, parse_lists(lists))
    }
    
    fn parse_graph(input: String) -> (Vec<Vec<u32>>, Vec<Vec<u32>>) {
        let (ordering, lists) = input.split_once("\n\n").unwrap();
        let mut graph = Vec::new();
        for l in ordering.lines() {
            let (a, b) = l.split_once('|').unwrap();
            let v: u32 = a.parse().unwrap();
            let w: u32 = b.parse().unwrap();
            let new_len = v.max(w) as usize + 1;
            if new_len > graph.len() {
                graph.resize(new_len, Vec::new())
            }
            graph[v as usize].push(w);
        }
        (graph, parse_lists(lists))
    }
    
    
    fn part1(input: String) {
        let (relation, lists) = parse_relation(input); 
        let mut sum = 0;
        for l in lists {
            let mut valid = true;
            for i in 0..l.len() {
                for j in 0..i {
                    if relation.contains(&(l[i], l[j])) {
                        valid = false;
                        break
                    }
                }
                if !valid { break }
            }
            if valid {
                sum += l[l.len() / 2];
            }
        }
        println!("{sum}");
    }
    
    
    // Topological order of graph, but limited to nodes in the set `subgraph`.
    // Otherwise the graph is not acyclic.
    fn topological_sort(graph: &[Vec<u32>], subgraph: &HashSet<u32>) -> Vec<u32> {
        let mut order = VecDeque::with_capacity(subgraph.len());
        let mut marked = vec![false; graph.len()];
        for &v in subgraph {
            if !marked[v as usize] {
                dfs(graph, subgraph, v as usize, &mut marked, &mut order)
            }
        }
        order.into()
    }
    
    fn dfs(graph: &[Vec<u32>], subgraph: &HashSet<u32>, v: usize, marked: &mut [bool], order: &mut VecDeque<u32>) {
        marked[v] = true;
        for &w in graph[v].iter().filter(|v| subgraph.contains(v)) {
            if !marked[w as usize] {
                dfs(graph, subgraph, w as usize, marked, order);
            }
        }
        order.push_front(v as u32);
    }
    
    fn rank(order: &[u32]) -> HashMap<u32, u32> {
        order.iter().enumerate().map(|(i, x)| (*x, i as u32)).collect()
    }
    
    // Part 1 with topological sorting, which is slower
    fn _part1(input: String) {
        let (graph, lists) = parse_graph(input);
        let mut sum = 0;
        for l in lists {
            let subgraph = HashSet::from_iter(l.iter().copied());
            let rank = rank(&topological_sort(&graph, &subgraph));
            if l.is_sorted_by_key(|x| rank[x]) {
                sum += l[l.len() / 2];
            }
        }
        println!("{sum}");
    }
    
    fn part2(input: String) {
        let (graph, lists) = parse_graph(input);
        let mut sum = 0;
        for mut l in lists {
            let subgraph = HashSet::from_iter(l.iter().copied());
            let rank = rank(&topological_sort(&graph, &subgraph));
            if !l.is_sorted_by_key(|x| rank[x]) {
                l.sort_unstable_by_key(|x| rank[x]);            
                sum += l[l.len() / 2];
            }
        }
        println!("{sum}");
    }
    
    util::aoc_main!();
    

    also on github

  • Nim

    import ../aoc, strutils, sequtils, tables
    
    type
      Rules = ref Table[int, seq[int]]
    
    #check if an update sequence is valid
    proc valid(update:seq[int], rules:Rules):bool =
      for pi, p in update:
        for r in rules.getOrDefault(p):
          let ri = update.find(r)
          if ri != -1 and ri < pi:
            return false
      return true
    
    proc backtrack(p:int, index:int, update:seq[int], rules: Rules, sorted: var seq[int]):bool =
      if index == 0:
        sorted[index] = p
        return true
      
      for r in rules.getOrDefault(p):
        if r in update and r.backtrack(index-1, update, rules, sorted):
          sorted[index] = p
          return true
      
      return false
    
    #fix an invalid sequence
    proc fix(update:seq[int], rules: Rules):seq[int] =
      echo "fixing", update
      var sorted = newSeqWith(update.len, 0);
      for p in update:
        if p.backtrack(update.len-1, update, rules, sorted):
          return sorted
      return @[]
    
    proc solve*(input:string): array[2,int] =
      let parts = input.split("\r\n\r\n");
      
      let rulePairs = parts[0].splitLines.mapIt(it.strip.split('|').map(parseInt))
      let updates = parts[1].splitLines.mapIt(it.split(',').map(parseInt))
      
      # fill rules table
      var rules = new Rules
      for rp in rulePairs:
        if rules.hasKey(rp[0]):
          rules[rp[0]].add rp[1];
        else:
          rules[rp[0]] = @[rp[1]]
          
      # fill reverse rules table
      var backRules = new Rules
      for rp in rulePairs:
        if backRules.hasKey(rp[1]):
          backRules[rp[1]].add rp[0];
        else:
          backRules[rp[1]] = @[rp[0]]
      
      for u in updates:
        if u.valid(rules):
          result[0] += u[u.len div 2]
        else:
          let uf = u.fix(backRules)
          result[1] += uf[uf.len div 2]
    

    I thought of doing a sort at first, but dismissed it for some reason, so I came up with this slow and bulky recursive backtracking thing which traverses the rules as a graph until it reaches a depth equal to the given sequence. Not my finest work, but it does solve the puzzle :)

  • Haskell

    It's more complicated than it needs to be, could've done the first part just like the second.
    Also it takes one second (!) to run it .-.

    import Data.Maybe as Maybe
    import Data.List as List
    import Control.Arrow hiding (first, second)
    
    parseRule :: String -> (Int, Int)
    parseRule s = (read . take 2 &&& read . drop 3) s
    
    replace t r c = if t == c then r else c
    
    parse :: String -> ([(Int, Int)], [[Int]])
    parse s = (map parseRule rules, map (map read . words) updates)
            where
                    rules = takeWhile (/= "") . lines $ s
                    updates = init . map (map (replace ',' ' ')) . drop 1 . dropWhile (/= "") . lines $ s
    
    validRule (pairLeft, pairRight) (ruleLeft, ruleRight)
            | pairLeft == ruleRight && pairRight == ruleLeft = False
            | otherwise = True
    
    validatePair rs p = all (validRule p) rs
    
    validateUpdate rs u = all (validatePair rs) pairs
            where 
                    pairs = List.concatMap (\ t -> map (head t, ) (tail t)) . filter (length >>> (> 1)) . tails $ u
    
    middleElement :: [a] -> a
    middleElement us = (us !!) $ (length us `div` 2)
    
    part1 (rs, us) = sum . map (middleElement) . filter (validateUpdate rs) $ us
    
    insertOrderly rs i is = insertOrderly' frontRules i is
            where
                    frontRules = filter (((== i) . fst)) rs
    
    insertOrderly' _  i [] = [i]
    insertOrderly' rs i (i':is)
            | any (snd >>> (== i')) rs = i : i' : is
            | otherwise = i' : insertOrderly' rs i is
    
    part2 (rs, us) = sum . map middleElement . Maybe.mapMaybe ((orderUpdate &&& id) >>> \ p -> if (fst p /= snd p) then Just $ fst p else Nothing) $ us
            where
                    orderUpdate = foldr (insertOrderly rs) []
    
    main = getContents >>= print . (part1 &&& part2) . parse
    
  • Well, this one ended up with a surprisingly easy part 2 with how I wrote it.
    Not the most computationally optimal code, but since they're still cheap enough to run in milliseconds I'm not overly bothered.

    C#
    class OrderComparer : IComparer<int>
    {
      Dictionary<int, List<int>> ordering;
      public OrderComparer(Dictionary<int, List<int>> ordering) {
        this.ordering = ordering;
      }
    
      public int Compare(int x, int y)
      {
        if (ordering.ContainsKey(x) && ordering[x].Contains(y))
          return -1;
        return 1;
      }
    }
    
    Dictionary<int, List<int>> ordering = new Dictionary<int, List<int>>();
    int[][] updates = new int[0][];
    
    public void Input(IEnumerable<string> lines)
    {
      foreach (var pair in lines.TakeWhile(l => l.Contains('|')).Select(l => l.Split('|').Select(w => int.Parse(w))))
      {
        if (!ordering.ContainsKey(pair.First()))
          ordering[pair.First()] = new List<int>();
        ordering[pair.First()].Add(pair.Last());
      }
      updates = lines.SkipWhile(s => s.Contains('|') || string.IsNullOrWhiteSpace(s)).Select(l => l.Split(',').Select(w => int.Parse(w)).ToArray()).ToArray();
    }
    
    public void Part1()
    {
      int correct = 0;
      var comparer = new OrderComparer(ordering);
      foreach (var update in updates)
      {
        var ordered = update.Order(comparer);
        if (update.SequenceEqual(ordered))
          correct += ordered.Skip(ordered.Count() / 2).First();
      }
    
      Console.WriteLine($"Sum: {correct}");
    }
    public void Part2()
    {
      int incorrect = 0;
      var comparer = new OrderComparer(ordering);
      foreach (var update in updates)
      {
        var ordered = update.Order(comparer);
        if (!update.SequenceEqual(ordered))
          incorrect += ordered.Skip(ordered.Count() / 2).First();
      }
    
      Console.WriteLine($"Sum: {incorrect}");
    }
    
  • Python

    sort using a compare function

    from math import floor
    from pathlib import Path
    from functools import cmp_to_key
    cwd = Path(__file__).parent
    
    def parse_protocol(path):
    
      with path.open("r") as fp:
        data = fp.read().splitlines()
    
      rules = data[:data.index('')]
      page_to_rule = {r.split('|')[0]:[] for r in rules}
      [page_to_rule[r.split('|')[0]].append(r.split('|')[1]) for r in rules]
    
      updates = list(map(lambda x: x.split(','), data[data.index('')+1:]))
    
      return page_to_rule, updates
    
    def sort_pages(pages, page_to_rule):
    
      compare_pages = lambda page1, page2:\
        0 if page1 not in page_to_rule or page2 not in page_to_rule[page1] else -1
    
      return sorted(pages, key = cmp_to_key(compare_pages))
    
    def solve_problem(file_name, fix):
    
      page_to_rule, updates = parse_protocol(Path(cwd, file_name))
    
      to_print = [temp_p[int(floor(len(pages)/2))] for pages in updates
                  if (not fix and (temp_p:=pages) == sort_pages(pages, page_to_rule))
                  or (fix and (temp_p:=sort_pages(pages, page_to_rule)) != pages)]
    
      return sum(map(int,to_print))
    
  • C

    I got the question so wrong - I thought a|b and b|c would imply a|c so I went and used dynamic programming to propagate indirect relations through a table.

    It worked beautifully but not for the input, which doesn't describe an absolute global ordering at all. It may well give a|c and b|c AND c|a. Nothing can be deduced then, and nothing needs to, because all required relations are directly specified.

    The table works great though, the sort comparator is a simple 2D array index, so O(1).

    Code
    #include "common.h"
    
    #define TSZ 100
    #define ASZ 32
    
    /* tab[a][b] is -1 if a<b and 1 if a>b */
    static int8_t tab[TSZ][TSZ];
    
    static int
    cmp(const void *a, const void *b)
    {
    	return tab[*(const int *)a][*(const int *)b];
    }
    
    int
    main(int argc, char **argv)
    {
    	char buf[128], *rest, *tok;
    	int p1=0,p2=0, arr[ASZ],srt[ASZ], n,i, a,b;
    
    	if (argc > 1)
    		DISCARD(freopen(argv[1], "r", stdin));
    	
    	while (fgets(buf, sizeof(buf), stdin)) {
    		if (sscanf(buf, "%d|%d", &a, &b) != 2)
    			break;
    		assert(a>=0); assert(a<TSZ);
    		assert(b>=0); assert(b<TSZ);
    		tab[a][b] = -(tab[b][a] = 1);
    	}
    
    	while ((rest = fgets(buf, sizeof(buf), stdin))) {
    		for (n=0; (tok = strsep(&rest, ",")); n++) {
    			assert(n < (int)LEN(arr));
    			sscanf(tok, "%d", &arr[n]);
    		}
    
    		memcpy(srt, arr, n*sizeof(*srt));
    		qsort(srt, n, sizeof(*srt), cmp);
    		*(memcmp(srt, arr, n*sizeof(*srt)) ? &p1 : &p2) += srt[n/2];
    	}
    
    	printf("05: %d %d\n", p1, p2);
    	return 0;
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day05.c

  • Python

    Also took advantage of cmp_to_key.

    from functools import cmp_to_key
    from pathlib import Path
    
    
    def parse_input(input: str) -> tuple[dict[int, list[int]], list[list[int]]]:
        rules, updates = tuple(input.strip().split("\n\n")[:2])
        order = {}
        for entry in rules.splitlines():
            values = entry.split("|")
            order.setdefault(int(values[0]), []).append(int(values[1]))
        updates = [[int(v) for v in u.split(",")] for u in updates.splitlines()]
        return (order, updates)
    
    
    def is_ordered(update: list[int], order: dict[int, list[int]]) -> bool:
        return update == sorted(
            update, key=cmp_to_key(lambda a, b: 1 if a in order.setdefault(b, []) else -1)
        )
    
    
    def part_one(input: str) -> int:
        order, updates = parse_input(input)
        return sum([u[len(u) // 2] for u in (u for u in updates if is_ordered(u, order))])
    
    
    def part_two(input: str) -> int:
        order, updates = parse_input(input)
        return sum(
            [
                sorted(u, key=cmp_to_key(lambda a, b: 1 if a in order[b] else -1))[
                    len(u) // 2
                ]
                for u in (u for u in updates if not is_ordered(u, order))
            ]
        )
    
    
    if __name__ == "__main__":
        input = Path("input").read_text("utf-8")
        print(part_one(input))
        print(part_two(input))
    
  • I was very much unhappy because my previous implementation took 1 second to execute and trashed through 2GB RAM in the process of doing so, I sat down again with some inspiration about the sorting approach.
    I am very much happy now, the profiler tells me that most of time is spend in the parsing functions now.

    I am also grateful for everyone else doing haskell, this way I learned about Arrays, Bifunctors and Arrows which (I think) improved my code a lot.

    Haskell

    import Control.Arrow hiding (first, second)
    
    import Data.Map (Map)
    import Data.Set (Set)
    import Data.Bifunctor
    
    import qualified Data.Maybe as Maybe
    import qualified Data.List as List
    import qualified Data.Map as Map
    import qualified Data.Set as Set
    import qualified Data.Ord as Ord
    
    
    parseRule :: String -> (Int, Int)
    parseRule s = (read . take 2 &&& read . drop 3) s
    
    replace t r c = if t == c then r else c
    
    parse :: String -> (Map Int (Set Int), [[Int]])
    parse s = (map parseRule >>> buildRuleMap $ rules, map (map read . words) updates)
            where
                    rules = takeWhile (/= "") . lines $ s
                    updates = init . map (map (replace ',' ' ')) . drop 1 . dropWhile (/= "") . lines $ s
    
    middleElement :: [a] -> a
    middleElement us = (us !!) $ (length us `div` 2)
    
    ruleGroup :: Eq a => (a, b) -> (a, b') -> Bool
    ruleGroup = curry (uncurry (==) <<< fst *** fst)
    
    buildRuleMap :: [(Int, Int)] -> Map Int (Set Int)
    buildRuleMap rs = List.sortOn fst
            >>> List.groupBy ruleGroup 
            >>> map ((fst . head) &&& map snd) 
            >>> map (second Set.fromList) 
            >>> Map.fromList 
            $ rs
    
    elementSort :: Map Int (Set Int) -> Int -> Int -> Ordering 
    elementSort rs a b
            | Maybe.maybe False (Set.member b) (rs Map.!? a) = LT
            | Maybe.maybe False (Set.member a) (rs Map.!? b) = GT
            | otherwise = EQ
    
    isOrdered rs u = (List.sortBy (elementSort rs) u) == u
    
    part1 (rs, us) = filter (isOrdered rs)
            >>> map middleElement
            >>> sum
            $ us
    part2 (rs, us) = filter (isOrdered rs >>> not)
            >>> map (List.sortBy (elementSort rs))
            >>> map middleElement
            >>> sum
            $ us
    
    main = getContents >>= print . (part1 &&& part2) . parse
    
  • Haskell

    I should probably have used sortBy instead of this ad-hoc selection sort.

    import Control.Arrow
    import Control.Monad
    import Data.Char
    import Data.List qualified as L
    import Data.Map
    import Data.Set
    import Data.Set qualified as S
    import Text.ParserCombinators.ReadP
    
    parse = (,) <$> (fromListWith S.union <$> parseOrder) <*> (eol *> parseUpdate)
    parseOrder = endBy (flip (,) <$> (S.singleton <$> parseInt <* char '|') <*> parseInt) eol
    parseUpdate = endBy (sepBy parseInt (char ',')) eol
    parseInt = read <$> munch1 isDigit
    eol = char '\n'
    
    verify :: Map Int (Set Int) -> [Int] -> Bool
    verify m = and . (zipWith fn <*> scanl (flip S.insert) S.empty)
      where
        fn a = flip S.isSubsetOf (findWithDefault S.empty a m)
    
    getMiddle = ap (!!) ((`div` 2) . length)
    
    part1 m = sum . fmap getMiddle
    
    getOrigin :: Map Int (Set Int) -> Set Int -> Int
    getOrigin m l = head $ L.filter (S.disjoint l . preds) (S.toList l)
      where
        preds = flip (findWithDefault S.empty) m
    
    order :: Map Int (Set Int) -> Set Int -> [Int]
    order m s
      | S.null s = []
      | otherwise = h : order m (S.delete h s)
        where
          h = getOrigin m s
    
    part2 m = sum . fmap (getMiddle . order m . S.fromList)
    
    main = getContents >>= print . uncurry runParts . fst . last . readP_to_S parse
    runParts m = L.partition (verify m) >>> (part1 m *** part2 m)
    
  • Rust

    Used a sorted/unsorted comparison to solve the first part, the second part was just filling out the else branch.

    use std::{
        cmp::Ordering,
        collections::HashMap,
        io::{BufRead, BufReader},
    };
    
    fn main() {
        let mut lines = BufReader::new(std::fs::File::open("input.txt").unwrap()).lines();
    
        let mut rules: HashMap<u64, Vec<u64>> = HashMap::default();
    
        for line in lines.by_ref() {
            let line = line.unwrap();
    
            if line.is_empty() {
                break;
            }
    
            let lr = line
                .split('|')
                .map(|el| el.parse::<u64>())
                .collect::<Result<Vec<u64>, _>>()
                .unwrap();
    
            let left = lr[0];
            let right = lr[1];
    
            if let Some(values) = rules.get_mut(&left) {
                values.push(right);
                values.sort();
            } else {
                rules.insert(left, vec![right]);
            }
        }
    
        let mut updates: Vec<Vec<u64>> = Vec::default();
    
        for line in lines {
            let line = line.unwrap();
    
            let update = line
                .split(',')
                .map(|el| el.parse::<u64>())
                .collect::<Result<Vec<u64>, _>>()
                .unwrap();
    
            updates.push(update);
        }
    
        let mut middle_sum = 0;
        let mut fixed_middle_sum = 0;
    
        for update in updates {
            let mut update_sorted = update.clone();
            update_sorted.sort_by(|a, b| {
                if let Some(rules) = rules.get(a) {
                    if rules.contains(b) {
                        Ordering::Less
                    } else {
                        Ordering::Equal
                    }
                } else {
                    Ordering::Equal
                }
            });
    
            if update.eq(&update_sorted) {
                let middle = update[(update.len() - 1) / 2];
                middle_sum += middle;
            } else {
                let middle = update_sorted[(update_sorted.len() - 1) / 2];
                fixed_middle_sum += middle;
            }
        }
    
        println!("part1: {} part2: {}", middle_sum, fixed_middle_sum);
    }
    
  • Uiua

    This is the first one that caused me some headache because I didn't read the instructions carefully enough.
    I kept trying to create a sorted list for when all available pages were used, which got me stuck in an endless loop.

    Another fun part was figuring out to use memberof (∈) instead of find (⌕) in the last line of FindNext. So much time spent on debugging other areas of the code

    Run with example input here

    FindNext ← ⊙(
      ⊡1⍉,
      ⊃▽(▽¬)⊸∈
      ⊙⊙(⊡0⍉.)
      :⊙(⟜(▽¬∈))
    )
    
    # find the order of pages for a given set of rules
    FindOrder ← (
      ◴♭.
      []
      ⍢(⊂FindNext|⋅(>1⧻))
      ⊙◌⊂
    )
    
    PartOne ← (
      &rs ∞ &fo "input-5.txt"
      ∩°□°⊟⊜□¬⌕"\n\n".
      ⊙(⊜(□⊜⋕≠@,.)≠@\n.↘1)
      ⊜(⊜⋕≠@|.)≠@\n.
    
      ⊙.
      ¤
      ⊞(◡(°□:)
        ⟜:⊙(°⊟⍉)
        =2+∩∈
        ▽
        FindOrder
        ⊸≍°□:
        ⊙◌
      )
      ≡◇(⊡⌊÷2⧻.)▽♭
      /+
    )
    
    PartTwo ← (
      &rs ∞ &fo "input-5.txt"
      ∩°□°⊟⊜□¬⌕"\n\n".
      ⊙(⊜(□⊜⋕≠@,.)≠@\n.↘1)
      ⊜(⊜⋕≠@|.)≠@\n.
      ⊙.
      ⍜¤⊞(
        ◡(°□:)
        ⟜:⊙(°⊟⍉)
        =2+∩∈
        ▽
        FindOrder
        ⊸≍°□:
        ⊟∩□
      )
      ⊙◌
      ⊃(⊡0)(⊡1)⍉
      ≡◇(⊡⌊÷2⧻.)▽¬≡°□
      /+
    )
    
    &p "Day 5:"
    &pf "Part 1: "
    &p PartOne
    &pf "Part 2: "
    &p PartTwo
    
  • Lisp

    Part 1 and 2
    
    (defun p1-process-rules (line)
      (mapcar #'parse-integer (uiop:split-string line :separator "|")))
    
    (defun p1-process-pages (line)
      (mapcar #'parse-integer (uiop:split-string line :separator ",")))
    
    (defun middle (pages)
      (nth (floor (length pages) 2) pages))
    
    (defun check-rule-p (rule pages)
      (let ((p1 (position (car rule) pages))
            (p2 (position (cadr rule) pages)))
        (or (not p1) (not p2) (< p1 p2))))
    
    (defun ordered-p (pages rules)
      (loop for r in rules
            unless (check-rule-p r pages)
              return nil
            finally
               (return t)))
    
    (defun run-p1 (rules-file pages-file) 
      (let ((rules (read-file rules-file #'p1-process-rules))
            (pages (read-file pages-file #'p1-process-pages)))
        (loop for p in pages
              when (ordered-p p rules)
                sum (middle p)
              )))
    
    (defun fix-pages (rules pages)
      (sort pages (lambda (p1 p2) (ordered-p (list p1 p2) rules)) ))
    
    (defun run-p2 (rules-file pages-file) 
      (let ((rules (read-file rules-file #'p1-process-rules))
            (pages (read-file pages-file #'p1-process-pages)))
        (loop for p in pages
              unless (ordered-p p rules)
                sum (middle (fix-pages rules p))
              )))
    
    
  • Kotlin

    That was an easy one, once you define a comparator function. (At least when you have a sorting function in your standard-library.) The biggest part was the parsing. lol

    import kotlin.text.Regex
    
    fun main() {
        fun part1(input: List<String>): Int = parseInput(input).sumOf { if (it.isCorrectlyOrdered()) it[it.size / 2].pageNumber else 0 }
    
        fun part2(input: List<String>): Int = parseInput(input).sumOf { if (!it.isCorrectlyOrdered()) it.sorted()[it.size / 2].pageNumber else 0 }
    
        val testInput = readInput("Day05_test")
        check(part1(testInput) == 143)
        check(part2(testInput) == 123)
    
        val input = readInput("Day05")
        part1(input).println()
        part2(input).println()
    }
    
    fun parseInput(input: List<String>): List<List<Page>> {
        val (orderRulesStrings, pageSequencesStrings) = input.filter { it.isNotEmpty() }.partition { Regex("""\d+\|\d+""").matches(it) }
    
        val orderRules = orderRulesStrings.map { with(it.split('|')) { this[0].toInt() to this[1].toInt() } }
        val orderRulesX = orderRules.map { it.first }.toSet()
        val pages = orderRulesX.map { pageNumber ->
            val orderClasses = orderRules.filter { it.first == pageNumber }.map { it.second }
            Page(pageNumber, orderClasses)
        }.associateBy { it.pageNumber }
    
        val pageSequences = pageSequencesStrings.map { sequenceString ->
            sequenceString.split(',').map { pages[it.toInt()] ?: Page(it.toInt(), emptyList()) }
        }
    
        return pageSequences
    }
    
    /*
     * An order class is an equivalence class for every page with the same page to be printed before.
     */
    data class Page(val pageNumber: Int, val orderClasses: List<Int>): Comparable<Page> {
        override fun compareTo(other: Page): Int =
            if (other.pageNumber in orderClasses) -1
            else if (pageNumber in other.orderClasses) 1
            else 0
    }
    
    fun List<Page>.isCorrectlyOrdered(): Boolean = this == this.sorted()
    
    
  • Rust

    I don't love this code, but I didn't initially use a hashmap and it runs so fast it wasn't worth the time to refactor.

    use std::{cmp::Ordering, fs, str::FromStr};
    
    use color_eyre::eyre::{Report, Result};
    use itertools::Itertools;
    
    struct Updates(Vec<Vec<isize>>);
    
    impl FromStr for Updates {
        type Err = Report;
    
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let pages = s
                .lines()
                .map(|l| l.split(",").map(|n| n.parse::<isize>()).collect())
                .collect::<Result<_, _>>()?;
            Ok(Self(pages))
        }
    }
    
    impl Updates {
        fn get_valid(&self, rules: &OrderingRules) -> Self {
            let pages = self
                .0
                .clone()
                .into_iter()
                .filter(|p| rules.validate(p))
                .collect();
            Self(pages)
        }
    
        fn get_invalid(&self, rules: &OrderingRules) -> Self {
            let pages = self
                .0
                .clone()
                .into_iter()
                .filter(|p| !rules.validate(p))
                .collect();
            Self(pages)
        }
    }
    
    struct OrderingRules(Vec<(isize, isize)>);
    
    impl OrderingRules {
        fn validate(&self, pnums: &Vec<isize>) -> bool {
            self.0.iter().all(|(a, b)| {
                let Some(a_pos) = pnums.iter().position(|&x| x == *a) else {
                    return true;
                };
                let Some(b_pos) = pnums.iter().position(|&x| x == *b) else {
                    return true;
                };
                a_pos < b_pos
            })
        }
    
        fn fix(&self, pnums: &Vec<isize>) -> Vec<isize> {
            let mut v = pnums.clone();
    
            v.sort_by(|a, b| {
                let mut fr = self
                    .0
                    .iter()
                    .filter(|(ra, rb)| (ra == a || ra == b) && (rb == a || rb == b));
                if let Some((ra, _rb)) = fr.next() {
                    if ra == a {
                        Ordering::Less
                    } else {
                        Ordering::Greater
                    }
                } else {
                    Ordering::Equal
                }
            });
            v
        }
    }
    
    impl FromStr for OrderingRules {
        type Err = Report;
    
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let v = s
                .lines()
                .map(|l| {
                    l.splitn(2, "|")
                        .map(|n| n.parse::<isize>().unwrap())
                        .collect_tuple()
                        .ok_or_else(|| Report::msg("Rules need two items"))
                })
                .collect::<Result<_, _>>()?;
            Ok(Self(v))
        }
    }
    
    fn parse(s: &str) -> Result<(OrderingRules, Updates)> {
        let parts: Vec<_> = s.splitn(2, "\n\n").collect();
        let rules = OrderingRules::from_str(parts[0])?;
        let updates = Updates::from_str(parts[1])?;
        Ok((rules, updates))
    }
    
    fn part1(filepath: &str) -> Result<isize> {
        let input = fs::read_to_string(filepath)?;
        let (rules, updates) = parse(&input)?;
        let res = updates
            .get_valid(&rules)
            .0
            .iter()
            .map(|v| v[v.len() / 2])
            .sum();
        Ok(res)
    }
    
    fn part2(filepath: &str) -> Result<isize> {
        let input = fs::read_to_string(filepath)?;
        let (rules, updates) = parse(&input)?;
        let res = updates
            .get_invalid(&rules)
            .0
            .iter()
            .map(|v| rules.fix(&v))
            .map(|v| v[v.len() / 2])
            .sum();
        Ok(res)
    }
    
    fn main() -> Result<()> {
        color_eyre::install()?;
    
        println!("Part 1: {}", part1("d05/input.txt")?);
        println!("Part 2: {}", part2("d05/input.txt")?);
        Ok(())
    }
    
  • Zig

    const std = @import("std");
    const List = std.ArrayList;
    const Map = std.AutoHashMap;
    
    const tokenizeScalar = std.mem.tokenizeScalar;
    const splitScalar = std.mem.splitScalar;
    const parseInt = std.fmt.parseInt;
    const print = std.debug.print;
    const contains = std.mem.containsAtLeast;
    const eql = std.mem.eql;
    
    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    const alloc = gpa.allocator();
    
    const Answer = struct {
        middle_sum: i32,
        reordered_sum: i32,
    };
    
    pub fn solve(input: []const u8) !Answer {
        var rows = splitScalar(u8, input, '\n');
    
        // key is a page number and value is a
        // list of pages to be printed before it
        var rules = Map(i32, List(i32)).init(alloc);
        var pages = List([]i32).init(alloc);
        defer {
            var iter = rules.iterator();
            while (iter.next()) |rule| {
                rule.value_ptr.deinit();
            }
            rules.deinit();
            pages.deinit();
        }
    
        var parse_rules = true;
        while (rows.next()) |row| {
            if (eql(u8, row, "")) {
                parse_rules = false;
                continue;
            }
    
            if (parse_rules) {
                var rule_pair = tokenizeScalar(u8, row, '|');
                const rule = try rules.getOrPut(try parseInt(i32, rule_pair.next().?, 10));
                if (!rule.found_existing) {
                    rule.value_ptr.* = List(i32).init(alloc);
                }
                try rule.value_ptr.*.append(try parseInt(i32, rule_pair.next().?, 10));
            } else {
                var page = List(i32).init(alloc);
                var page_list = tokenizeScalar(u8, row, ',');
                while (page_list.next()) |list| {
                    try page.append(try parseInt(i32, list, 10));
                }
                try pages.append(try page.toOwnedSlice());
            }
        }
    
        var middle_sum: i32 = 0;
        var reordered_sum: i32 = 0;
    
        var wrong_order = false;
        for (pages.items) |page| {
            var index: usize = page.len - 1;
            while (index > 0) : (index -= 1) {
                var page_rule = rules.get(page[index]) orelse continue;
    
                // check the rest of the pages
                var remaining: usize = 0;
                while (remaining < page[0..index].len) {
                    if (contains(i32, page_rule.items, 1, &[_]i32{page[remaining]})) {
                        // re-order the wrong page
                        const element = page[remaining];
                        page[remaining] = page[index];
                        page[index] = element;
                        wrong_order = true;
    
                        if (rules.get(element)) |next_rule| {
                            page_rule = next_rule;
                        }
    
                        continue;
                    }
                    remaining += 1;
                }
            }
            if (wrong_order) {
                reordered_sum += page[(page.len - 1) / 2];
                wrong_order = false;
            } else {
                // middle page number
                middle_sum += page[(page.len - 1) / 2];
            }
        }
        return Answer{ .middle_sum = middle_sum, .reordered_sum = reordered_sum };
    }
    
    pub fn main() !void {
        const answer = try solve(@embedFile("input.txt"));
        print("Part 1: {d}\n", .{answer.middle_sum});
        print("Part 2: {d}\n", .{answer.reordered_sum});
    }
    
    test "test input" {
        const answer = try solve(@embedFile("test.txt"));
        try std.testing.expectEqual(143, answer.middle_sum);
        try std.testing.expectEqual(123, answer.reordered_sum);
    }
    
    
  • Java

    Part 2 was an interesting one and my solution kinda feels like cheating. What I did I only changed the validation method from part 1 to return the indexes of incorrectly placed pages and then randomly swapped those around in a loop until the validation passed. I was expecting this to not work at all or take forever to run but surprisingly it only takes three to five seconds to complete.

    import java.io.IOException;
    import java.nio.charset.StandardCharsets;
    import java.nio.file.Files;
    import java.nio.file.Path;
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.Collections;
    import java.util.HashSet;
    import java.util.List;
    import java.util.Random;
    import java.util.Set;
    import java.util.stream.Collectors;
    
    public class Day05 {
        private static final Random random = new Random();
    
        public static void main(final String[] args) throws IOException {
            final String input = Files.readString(Path.of("2024\\05\\input.txt"), StandardCharsets.UTF_8);
            final String[] inputSplit = input.split("[\r\n]{4,}");
    
            final List<PageOrderingRule> rules = Arrays.stream(inputSplit[0].split("[\r\n]+"))
                .map(row -> row.split("\\|"))
                .map(row -> new PageOrderingRule(Integer.parseInt(row[0]), Integer.parseInt(row[1])))
                .toList();
    
            final List<ArrayList<Integer>> updates = Arrays.stream(inputSplit[1].split("[\r\n]+"))
                .map(row -> row.split(","))
                .map(row -> Arrays.stream(row).map(Integer::parseInt).collect(Collectors.toCollection(ArrayList::new)))
                .toList();
    
            System.out.println("Part 1: " + updates.stream()
                .filter(update -> validate(update, rules).isEmpty())
                .mapToInt(update -> update.get(update.size() / 2))
                .sum()
            );
    
            System.out.println("Part 2: " + updates.stream()
                .filter(update -> !validate(update, rules).isEmpty())
                .map(update -> fixOrder(update, rules))
                .mapToInt(update -> update.get(update.size() / 2))
                .sum()
            );
        }
    
        private static Set<Integer> validate(final List<Integer> update, final List<PageOrderingRule> rules) {
            final Set<Integer> invalidIndexes = new HashSet<>();
    
            for (int i = 0; i < update.size(); i++) {
                final Integer integer = update.get(i);
                for (final PageOrderingRule rule : rules) {
                    if (rule.x == integer && update.contains(rule.y) && i > update.indexOf(rule.y)) {
                        invalidIndexes.add(i);
                    }
                    else if (rule.y == integer && update.contains(rule.x) && i < update.indexOf(rule.x)) {
                        invalidIndexes.add(i);
                    }
                }
            }
    
            return invalidIndexes;
        }
    
        private static List<Integer> fixOrder(final List<Integer> update, final List<PageOrderingRule> rules) {
            List<Integer> invalidIndexesList = new ArrayList<>(validate(update, rules));
    
            // Swap randomly until the validation passes
            while (!invalidIndexesList.isEmpty()) {
                Collections.swap(update, random.nextInt(invalidIndexesList.size()), random.nextInt(invalidIndexesList.size()));
                invalidIndexesList = new ArrayList<>(validate(update, rules));
            }
    
            return update;
        }
    
        private static record PageOrderingRule(int x, int y) {}
    }
    
  • Julia

    No really proud of todays solution. Probably because I started too late today.

    I used a dictionary with the numbers that should be in front of any given number. Then I checked if they appear after that number. Part1 check. For part 2 I just hoped for the best that ordering it would work by switching each two problematic entries and it worked.

    function readInput(inputFile::String)
    	f = open(inputFile,"r"); lines::Vector{String} = readlines(f); close(f)
    	updates::Vector{Vector{Int}} = []
    	pageOrderingRules = Dict{Int,Vector{Int}}()
    	readRules::Bool = true #switch off after rules are read, then read updates
    	for (i,line) in enumerate(lines)
    		line=="" ? (readRules=false;continue) : nothing
    		if readRules
    			values::Vector{Int} = map(x->parse(Int,x),split(line,"|"))
    			!haskey(pageOrderingRules,values[2]) ? pageOrderingRules[values[2]]=Vector{Int}() : nothing
    			push!(pageOrderingRules[values[2]],values[1])
    		else #read updates
    			push!(updates,map(x->parse(Int,x),split(line,",")))
    		end
    	end
    	return updates, pageOrderingRules
    end
    
    function checkUpdateInOrder(update::Vector{Int},pageOrderingRules::Dict{Int,Vector{Int}})::Bool
    	inCorrectOrder::Bool = true
    	for i=1 : length(update)-1
    		for j=i+1 : length(update)
    			!haskey(pageOrderingRules,update[i]) ? continue : nothing
    			update[j] in pageOrderingRules[update[i]] ? inCorrectOrder=false : nothing
    		end
    		!inCorrectOrder ? break : nothing
    	end
    	return inCorrectOrder
    end
    
    function calcMidNumSum(updates::Vector{Vector{Int}},pageOrderingRules::Dict{Int,Vector{Int}})::Int
    	midNumSum::Int = 0
    	for update in updates
    		checkUpdateInOrder(update,pageOrderingRules) ? midNumSum+=update[Int(ceil(length(update)/2))] : nothing
    	end
    	return midNumSum
    end
    
    function calcMidNumSumForCorrected(updates::Vector{Vector{Int}},pageOrderingRules::Dict{Int,Vector{Int}})::Int
    	midNumSum::Int = 0
    	for update in updates
    		inCorrectOrder::Bool = checkUpdateInOrder(update,pageOrderingRules)
    		inCorrectOrder ? continue : nothing #skip already correct updates
    		while !inCorrectOrder
    			for i=1 : length(update)-1
    				for j=i+1 : length(update)
    					!haskey(pageOrderingRules,update[i]) ? continue : nothing
    					if update[j] in pageOrderingRules[update[i]]
    						mem::Int = update[i]; update[i] = update[j]; update[j]=mem #switch entries
    					end
    				end
    			end
    			inCorrectOrder = checkUpdateInOrder(update,pageOrderingRules)
    		end
    		midNumSum += update[Int(ceil(length(update)/2))]
    	end
    	return midNumSum
    end
    
    updates, pageOrderingRules = readInput("day05Input")
    println("part 1 sum: $(calcMidNumSum(updates,pageOrderingRules))")
    println("part 2 sum: $(calcMidNumSumForCorrected(updates,pageOrderingRules))")
    
  • python

    solution
    import re
    import aoc
    
    def setup():
        lines = aoc.get_lines(5)
        return ([list(map(int, re.findall(r'\d+', x)))
                 for x in lines if re.search(r'\|', x)],
                [list(map(int, re.findall(r'\d+', x)))
                 for x in lines if re.search(r',', x)], 0)
    
    def one():
        rules, updates, acc = setup()
        for update in updates:
            v = 1
            for i, u in enumerate(update):
                r = [x[0] for x in rules if x[1] == u and x[0] in update]
                if not all(n in update[:i] for n in r):
                    v = 0
                    break
            if v:
                acc += update[len(update) // 2]
        print(acc)
    
    def fix(update, rules):
        c = 1
        while c:
            c = 0
            for i, u in enumerate(update):
                r = [x[0] for x in rules if x[1] == u and x[0] in update]
                for p in r:
                    pi = update.index(p)
                    if pi > i:
                        update[i], update[pi] = update[pi], update[i]
                        c = 1
        return update[len(update) // 2]
    
    def two():
        rules, updates, acc = setup()
        for update in updates:
            v = 1
            for i, u in enumerate(update):
                r = [x[0] for x in rules if x[1] == u and x[0] in update]
                if not all(n in update[:i] for n in r):
                    v = 0
                    break
            if not v:
                acc += fix(update, rules)
        print(acc)
    
    one()
    two()
    
  • Still in rust, and still inexperienced.

    Forgot to make a separate solve for part two, for part one, imagine this without the make_valid function and some slightly different structure changes around the accumulator in babbage().

    Used a hash map to track what should be in order, and a few indexed loops to keep track of where I’m at and where to look forward.

    Day 5

  • Smalltalk

    parsing logic is duplicated between the two, and I probably could use part2's logic for part 1, but yeah

    part 1

    day5p1: in
    	| rules pages i j input |
    
    	input := in lines.
    	i := input indexOf: ''.
    	rules := ((input copyFrom: 1 to: i-1) collect: [:l | (l splitOn: '|') collect: #asInteger]).
    	pages := (input copyFrom: i+1 to: input size) collect: [:l | (l splitOn: ',') collect: #asInteger].
    	
    	^ pages sum: [ :p |
    		(rules allSatisfy: [ :rule |
    			i := p indexOf: (rule at: 1).
    			j := p indexOf: (rule at: 2).
    			(i ~= 0 & (j ~= 0)) ifTrue: [ i < j ] ifFalse: [ true ]
    		])
    			ifTrue: [p at: ((p size / 2) round: 0) ]
    			ifFalse: [0].
    	]
    

    part 2

    day5p2: in
    	| rules pages i pnew input |
    
    	input := in lines.
    	i := input indexOf: ''.
    	rules := ((input copyFrom: 1 to: i-1) collect: [:l | (l splitOn: '|') collect: #asInteger]).
    	pages := (input copyFrom: i+1 to: input size) collect: [:l | (l splitOn: ',') collect: #asInteger].
    	
    	^ pages sum: [ :p |
    		pnew := p sorted: [ :x :y | 
    			rules anySatisfy: [ :r | (r at: 1) = x and: [ (r at: 2) = y]]
    		].
    		pnew ~= p
    			ifTrue: [ pnew at: ((pnew size / 2) round: 0) ]
    			ifFalse: [0].
    	]
    
  • I've got a "smart" solution and a really dumb one. I'll start with the smart one (incomplete but you can infer). I did four different ways to try to get it faster, less memory, etc.

    // this is from a nuget package. My Mathy roommate told me this was a topological sort.
    // It's also my preferred, since it'd perform better on larger data sets.
    return lines
        .AsParallel()
        .Where(line => !IsInOrder(GetSoonestOccurrences(line), aggregateRules))
        .Sum(line => line.StableOrderTopologicallyBy(
                getDependencies: page =>
                    aggregateRules.TryGetValue(page, out var mustPreceed) ? mustPreceed.Intersect(line) : Enumerable.Empty<Page>())
            .Middle()
        );
    

    The dumb solution. These comparisons aren't fully transitive. I can't believe it works.

    public static SortedSet<Page> Sort3(Page[] line,
        Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules)
    {
        // how the hell is this working?
        var sorted = new SortedSet<Page>(new Sort3Comparer(rules));
        foreach (var page in line)
            sorted.Add(page);
        return sorted;
    }
    
    public static Page[] OrderBy(Page[] line, Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules)
    {
        return line.OrderBy(identity, new Sort3Comparer(rules)).ToArray();
    }
    
    sealed class Sort3Comparer : IComparer<Page>
    {
        private readonly Dictionary<Page, System.Collections.Generic.HashSet<Page>> _rules;
    
        public Sort3Comparer(Dictionary<Page, System.Collections.Generic.HashSet<Page>> rules) => _rules = rules;
    
        public int Compare(Page x, Page y)
        {
            if (_rules.TryGetValue(x, out var xrules))
            {
                if (xrules.Contains(y))
                    return -1;
            }
    
            if (_rules.TryGetValue(y, out var yrules))
            {
                if (yrules.Contains(x))
                    return 1;
            }
    
            return 0;
        }
    }
    
    Method Mean Error StdDev Gen0 Gen1 Allocated
    Part2_UsingList (literally just Insert) 660.3 us 12.87 us 23.20 us 187.5000 35.1563 1144.86 KB
    Part2_TrackLinkedList (wrong now) 1,559.7 us 6.91 us 6.46 us 128.9063 21.4844 795.03 KB
    Part2_TopologicalSort 732.3 us 13.97 us 16.09 us 285.1563 61.5234 1718.36 KB
    Part2_SortedSet 309.1 us 4.13 us 3.45 us 54.1992 10.2539 328.97 KB
    Part2_OrderBy 304.5 us 6.09 us 9.11 us 48.8281 7.8125 301.29 KB
  • Rust

    Kinda sorta got day 5 done on time.

    use std::cmp::Ordering;
    
    use crate::utils::{bytes_to_num, read_lines};
    
    pub fn solution1() {
        let mut lines = read_input();
        let rules = parse_rules(&mut lines);
    
        let middle_rules_sum = lines
            .filter_map(|line| {
                let line_nums = rule_line_to_list(&line);
                line_nums
                    .is_sorted_by(|&a, &b| is_sorted(&rules, (a, b)))
                    .then_some(line_nums[line_nums.len() / 2])
            })
            .sum::<usize>();
    
        println!("Sum of in-order middle rules = {middle_rules_sum}");
    }
    
    pub fn solution2() {
        let mut lines = read_input();
        let rules = parse_rules(&mut lines);
    
        let middle_rules_sum = lines
            .filter_map(|line| {
                let mut line_nums = rule_line_to_list(&line);
    
                (!line_nums.is_sorted_by(|&a, &b| is_sorted(&rules, (a, b)))).then(|| {
                    line_nums.sort_by(|&a, &b| {
                        is_sorted(&rules, (a, b))
                            .then_some(Ordering::Less)
                            .unwrap_or(Ordering::Greater)
                    });
    
                    line_nums[line_nums.len() / 2]
                })
            })
            .sum::<usize>();
    
        println!("Sum of middle rules = {middle_rules_sum}");
    }
    
    fn read_input() -> impl Iterator<Item = String> {
        read_lines("src/day5/input.txt")
    }
    
    fn parse_rules(lines: &mut impl Iterator<Item = String>) -> Vec<(usize, usize)> {
        lines
            .take_while(|line| !line.is_empty())
            .fold(Vec::new(), |mut rules, line| {
                let (a, b) = line.as_bytes().split_at(2);
                let a = bytes_to_num(a);
                let b = bytes_to_num(&b[1..]);
    
                rules.push((a, b));
    
                rules
            })
    }
    
    fn rule_line_to_list(line: &str) -> Vec<usize> {
        line.split(',')
            .map(|s| bytes_to_num(s.as_bytes()))
            .collect::<Vec<_>>()
    }
    
    fn is_sorted(rules: &[(usize, usize)], tuple: (usize, usize)) -> bool {
        rules.iter().any(|&r| r == tuple)
    }
    

    Reusing my bytes_to_num function from day 3 feels nice. Pretty fun challenge.

  • Elixir

    defmodule AdventOfCode.Solution.Year2024.Day05 do
      use AdventOfCode.Solution.SharedParse
    
      @impl true
      def parse(input) do
        [rules, pages_list] =
          String.split(input, "\n\n", limit: 2) |> Enum.map(&String.split(&1, "\n", trim: true))
    
        {for(rule <- rules, do: String.split(rule, "|") |> Enum.map(&String.to_integer/1))
         |> MapSet.new(),
         for(pages <- pages_list, do: String.split(pages, ",") |> Enum.map(&String.to_integer/1))}
      end
    
      def part1({rules, pages_list}), do: solve(rules, pages_list, false)
    
      def part2({rules, pages_list}), do: solve(rules, pages_list, true)
    
      def solve(rules, pages_list, negate) do
        for pages <- pages_list, reduce: 0 do
          total ->
            ordered = Enum.sort(pages, &([&1, &2] in rules))
    
            if negate != (ordered == pages),
              do: total + Enum.at(ordered, div(length(ordered), 2)),
              else: total
        end
      end
    end
    
  • Python

    (Part 1) omg I can't believe this actually worked first try!

    with open('input') as data:
        parts = data.read().rstrip().split("\n\n")
        ordering_rules = parts[0].split("\n")
        updates = parts[1].split("\n")
    
    correct_updates = []
    middle_updates = []
    
    def find_relevant_rules(pg_num: str, rules: list[str]) -> list[str] | None:
        for rule in rules:
            return list(filter(lambda x: x.split("|")[0] == pg_num, rules))
    
    def interpret_rule(rule: str) -> list[str]:
        return rule.split("|")
    
    def interpret_update(update: str) -> list[str]:
        return update.split(",")
    
    def find_middle_update_index(update: list[str]) -> int:
        num_of_elements = len(update)
        return num_of_elements // 2
    
    for update in updates:
        is_correct = True
        for i, page in enumerate(interpret_update(update)):
           rules_to_check = find_relevant_rules(page, ordering_rules) 
           for rule in rules_to_check:
               if rule.split("|")[1] in interpret_update(update)[:i]:
                   is_correct = False
        if is_correct:
            correct_updates.append(update)
    
    for update in correct_updates:
        split_update = update.split(",")
        middle_updates.append(int(split_update[find_middle_update_index(split_update)]))
    print(sum(middle_updates))
    
  • Go

    Using a map to store u|v relations. Part 2 sorting with a custom compare function worked very nicely

    spoiler
    func main() {
    	file, _ := os.Open("input.txt")
    	defer file.Close()
    	scanner := bufio.NewScanner(file)
    
    	mapPages := make(map[string][]string)
    	rulesSection := true
    	middleSumOk := 0
    	middleSumNotOk := 0
    
    	for scanner.Scan() {
    		line := scanner.Text()
    		if line == "" {
    			rulesSection = false
    			continue
    		}
    
    		if rulesSection {
    			parts := strings.Split(line, "|")
    			u, v := parts[0], parts[1]
    			mapPages[u] = append(mapPages[u], v)
    		} else {
    			update := strings.Split(line, ",")
    			isOk := true
    
    			for i := 1; i < len(update); i++ {
    				u, v := update[i-1], update[i]
    				if !slices.Contains(mapPages[u], v) {
    					isOk = false
    					break
    				}
    			}
    
    			middlePos := len(update) / 2
    			if isOk {
    				middlePage, _ := strconv.Atoi(update[middlePos])
    				middleSumOk += middlePage
    			} else {
    				slices.SortFunc(update, func(u, v string) int {
    					if slices.Contains(mapPages[u], v) {
    						return -1
    					} else if slices.Contains(mapPages[v], u) {
    						return 1
    					}
    					return 0
    				})
    				middlePage, _ := strconv.Atoi(update[middlePos])
    				middleSumNotOk += middlePage
    			}
    		}
    	}
    
    	fmt.Println("Part 1:", middleSumOk)
    	fmt.Println("Part 2:", middleSumNotOk)
    }
    
  • TypeScript

    Solution
    import { AdventOfCodeSolutionFunction } from "./solutions";
    
    type RulesType = Map<number, Array<number>>;
    
    const ReduceMiddleNumbers = (p: number, v: Array<number>) => p + v[(v.length - 1) / 2];
    
    const CheckPages = (pages: Array<number>, rules: RulesType): [true] | [false, number, number] => {
        for (let index = 0; index < pages.length; index++) {
            const page = pages[index]; // [97,61,53,29,13] => 97
            const elementRules = rules.get(page);
    
            // there are no rules for this number
            if (elementRules === undefined)
                continue;
    
            for (let ruleIndex = 0; ruleIndex < elementRules.length; ruleIndex++) {
                const rule = elementRules[ruleIndex];
                const rulePos = pages.indexOf(rule);
    
                // the number specified in the rule doesn't exist in our page
                if (rulePos == -1)
                    continue;
    
                // the number came before our current index, meaning it's bad.
                if (index > rulePos) 
                    return [false, index, rulePos];
            }
        }
    
        return [true];
    }
    
    
    const Reposition = (pages: Array<number>, rules: RulesType) => {
        const newPages = [...pages];
        let res = CheckPages(newPages, rules);
        let i = 0; 
        // this will be public facing api and it's possible to create inf loops so, 10k limit
        while(!res[0] && i++ < 10000) {
            // yes I know the trick, but tricks < semantics
            const moveThisRight = newPages[res[1]];
            const moveThisLeft = newPages[res[2]];
            newPages[res[1]] = moveThisLeft;
            newPages[res[2]] = moveThisRight;
    
            res = CheckPages(newPages, rules);
        }
    
        return [...newPages];
    }
    
    export const solution_5: AdventOfCodeSolutionFunction = (input) => {
        const [rules_input, content_input] = input.split("\n\n").map(v => v.trim());
    
        const rules: RulesType = new Map();
    
        rules_input.split("\n").map(v => v.split("|").map(v => Number(v))).forEach((rule) => {
            const [k, v] = rule;
            if (rules.has(k))
                rules.get(k)!.push(v);
            else
                rules.set(k, [v]);
        });
    
        const correctArray: Array<Array<number>> = [];
        const incorrectArray: Array<Array<number>> = [];
    
        content_input.split("\n").map(v => v.split(",").map(v => Number(v))).forEach(pages => {
            if(CheckPages(pages, rules)[0])
                correctArray.push(pages);
            else
                incorrectArray.push(pages);
        });
    
        const part_1 = correctArray.reduce<number>(ReduceMiddleNumbers, 0);
        const part_2 = incorrectArray.map((v) => Reposition([...v], rules)).reduce<number>(ReduceMiddleNumbers, 0);
    
        return {
            part_1,
            part_2,
        }
    }
    
56 comments