Skip Navigation

🌚 - 2024 DAY 4 SOLUTIONS - 🌚

Day 4: Ceres Search

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

34
34 comments
  • Uiua

    Just part1 for now as I need to walk the dog :-)

    [edit] Part 2 now added, and a nicer approach than Part 1 in my opinion, if you're able to keep that many dimensions straight in your head :-)

    [edit 2] Tightened it up a bit more.

    Grid ← βŠœβˆ˜βŠΈβ‰ @\n "MMMSXXMASM\nMSAMXMSMSA\nAMXSXMAAMM\nMSAMASMSMX\nXMASAMXAMM\nXXAMMXXAMA\nSMSMSASXSS\nSAXAMASAAA\nMAMMMXMMMM\nMXMXAXMASX"
    
    ≑⍉⍉×⇑4Β€[1_0 0_1 1_1 1_Β―1]         # Use core dirs to build sets of 4-offsets.
    β†―βˆž_2⇑△ Grid                       # Get all possible starting points.
    &p/+β™­βŠž(+∩(≍"XMAS")β‡Œ.⬚@.⊑:Grid≑+Β€) # Part 1. Join the two into a table, use to pick 4-elements, check, count.
    
    Diags   ← [[Β―. 1_1] [Β―. 1_Β―1]]
    BothMas ← /×≑(+∩(≍"MS")β‡Œ.)⬚@.βŠ‘β‰‘+Diags€€ # True if both diags here are MAS.
    &p/+≑BothMas⊚="A"⟜€Grid                 # Part 2. For all "A"s in grid, check diags, count where good.
    
  • Haskell

    Popular language this year :)

    I got embarrassingly stuck on this one trying to be clever with list operations. Then I realized I should just use an array...

    import Data.Array.Unboxed (UArray)
    import Data.Array.Unboxed qualified as A
    import Data.Bifunctor
    
    readInput :: String -> UArray (Int, Int) Char
    readInput s =
      let rows = lines s
          n = length rows
       in A.listArray ((1, 1), (n, n)) $ concat rows
    
    s1 `eq` s2 = s1 == s2 || s1 == reverse s2
    
    part1 arr = length $ filter isXmas $ concatMap lines $ A.indices arr
      where
        isXmas ps = all (A.inRange $ A.bounds arr) ps && map (arr A.!) ps `eq` "XMAS"
        lines p = [take 4 $ iterate (bimap (+ di) (+ dj)) p | (di, dj) <- [(1, 0), (0, 1), (1, 1), (1, -1)]]
    
    part2 arr = length $ filter isXmas innerPoints
      where
        innerPoints =
          let ((i1, j1), (i2, j2)) = A.bounds arr
           in [(i, j) | i <- [i1 + 1 .. i2 - 1], j <- [j1 + 1 .. j2 - 1]]
        isXmas p = up p `eq` "MAS" && down p `eq` "MAS"
        up (i, j) = map (arr A.!) [(i + 1, j - 1), (i, j), (i - 1, j + 1)]
        down (i, j) = map (arr A.!) [(i - 1, j - 1), (i, j), (i + 1, j + 1)]
    
    main = do
      input <- readInput <$> readFile "input04"
      print $ part1 input
      print $ part2 input
    
  • I struggled a lot more when doing list slices that I would've liked to

    Haskell

    
    import Data.List qualified as List
    
    collectDiagonal :: [String] -> Int -> Int -> String
    collectDiagonal c y x
            | length c > y && length (c !! y) > x = c !! y !! x : collectDiagonal c (y+1) (x+1)
            | otherwise = []
    
    part1 c = do
            let forwardXMAS  = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ c
            let backwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ c
            let downwardXMAS  = map (length . filter (List.isPrefixOf "XMAS") . List.tails ) . List.transpose $ c
            let upwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse ) . List.transpose $ c
            let leftSideDiagonals = map (\ y -> collectDiagonal c y 0) [0..length c]
            let leftTopDiagonals = map (\ x -> collectDiagonal c 0 x) [1..(length . List.head $ c)]
            let leftDiagonals = leftSideDiagonals ++ leftTopDiagonals
            let rightSideDiagonals = map (\ y -> collectDiagonal (map List.reverse c) y 0) [0..length c]
            let rightTopDiagonals = map (\ x -> collectDiagonal (map List.reverse c) 0 x) [1..(length . List.head $ c)]
            let rightDiagonals = rightSideDiagonals ++ rightTopDiagonals
            let diagonals = leftDiagonals ++ rightDiagonals
    
            let diagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ diagonals
            let reverseDiagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ diagonals
    
            print . sum $ [sum forwardXMAS, sum backwardXMAS, sum downwardXMAS, sum upwardXMAS, sum diagonalXMAS, sum reverseDiagonalXMAS]
            return ()
    
    getBlock h w c y x = map (take w . drop x) . take h . drop y $ c
    
    isXBlock b = do
            let diagonal1 = collectDiagonal b 0 0
            let diagonal2 = collectDiagonal (map List.reverse b) 0 0
    
            diagonal1 `elem` ["SAM", "MAS"] && diagonal2 `elem` ["SAM", "MAS"]
    
    part2 c = do
            
            let lineBlocks = List.map (getBlock 3 3 c) [0..length c - 1]
            let groupedBlocks = List.map (flip List.map [0..(length . head $ c) - 1]) lineBlocks
    
            print . sum . map (length . filter isXBlock) $ groupedBlocks
    
            return ()
    
    main = do
            c <- lines <$> getContents
    
            part1 c
            part2 c
    
            return ()
    
  • Nim

    Could be done more elegantly, but I haven’t bothered yet.

    proc solve(input: string): AOCSolution[int, int] =
      var lines = input.splitLines()
    
      block p1:
        # horiz
        for line in lines:
          for i in 0..line.high-3:
            if line[i..i+3] in ["XMAS", "SAMX"]:
              inc result.part1
    
        for y in 0..lines.high-3:
          #vert
          for x in 0..lines[0].high:
            let word = collect(for y in y..y+3: lines[y][x])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
          #diag \
          for x in 0..lines[0].high-3:
            let word = collect(for d in 0..3: lines[y+d][x+d])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
          #diag /
          for x in 3..lines[0].high:
            let word = collect(for d in 0..3: lines[y+d][x-d])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
      block p2:
        for y in 0..lines.high-2:
          for x in 0..lines[0].high-2:
            let diagNW = collect(for d in 0..2: lines[y+d][x+d])
            let diagNE = collect(for d in 0..2: lines[y+d][x+2-d])
            if diagNW in [@"MAS", @"SAM"] and diagNE in [@"MAS", @"SAM"]:
              inc result.part2
    

    Codeberg repo

  • Haskell

    import Control.Arrow
    import Data.Array.Unboxed
    import Data.List
    
    type Pos = (Int, Int)
    type Board = Array Pos Char
    data Dir = N | NE | E | SE | S | SW | W | NW
    
    target = "XMAS"
    
    parse s = listArray ((1, 1), (n, m)) [l !! i !! j | i <- [0 .. n - 1], j <- [0 .. m - 1]]
      where
        l = lines s
        (n, m) = (length $ head l, length l)
    
    move N = first pred
    move S = first succ
    move E = second pred
    move W = second succ
    move NW = move N . move W
    move SW = move S . move W
    move NE = move N . move E
    move SE = move S . move E
    
    check :: Board -> Pos -> Int -> Dir -> Bool
    check b p i d =
        i >= length target
            || ( inRange (bounds b) p
                    && (b ! p) == (target !! i)
                    && check b (move d p) (succ i) d
               )
    
    checkAllDirs :: Board -> Pos -> Int
    checkAllDirs b p = length . filter (check b p 0) $ [N, NE, E, SE, S, SW, W, NW]
    
    check2 :: Board -> Pos -> Bool
    check2 b p =
        all (inRange (bounds b)) moves && ((b ! p) == 'A') && ("SSMM" `elem` rotations)
      where
        rotations = rots $ (b !) <$> moves
        moves = flip move p <$> [NE, SE, SW, NW]
    
        rots xs = init $ zipWith (++) (tails xs) (inits xs)
    
    part1 b = sum $ checkAllDirs b <$> indices b
    part2 b = length . filter (check2 b) $ indices b
    
    main = getContents >>= print . (part1 &&& part2) . parse
    
  • Factor

    spoiler
    : get-input ( -- rows )
      "vocab:aoc-2024/04/input.txt" utf8 file-lines ;
    
    : verticals ( rows -- lines )
      [ dimension last [0..b) ] keep cols ;
    
    : slash-origins ( rows -- coords )
      dimension
      [ first [0..b) [ 0 2array ] map ] [
        first2 [ 1 - ] [ 1 (a..b] ] bi*
        [ 2array ] with map
      ] bi append ;
    
    : backslash-origins ( rows -- coords )
      dimension first2
      [ [0..b) [ 0 2array ] map ]
      [ 1 (a..b] [ 0 swap 2array ] map ] bi* append ;
    
    : slash ( rows origin -- line )
      first2
      [ 0 [a..b] ]
      [ pick dimension last [a..b) ] bi* zip
      swap matrix-nths ;
    
    : backslash ( rows origin -- line )
      [ dup dimension ] dip first2
      [ over first [a..b) ]
      [ pick last [a..b) ] bi* zip nip
      swap matrix-nths ;
    
    : slashes ( rows -- lines )
      dup slash-origins
      [ slash ] with map ;
    
    : backslashes ( rows -- lines )
      dup backslash-origins
      [ backslash ] with map ;
    
    : word-count ( line word -- n )
      dupd [ reverse ] dip
      '[ _ subseq-indices length ] bi@ + ;
    
    : part1 ( -- n )
      get-input
      { [ ] [ verticals ] [ slashes ] [ backslashes ] } cleave-array concat
      [ "XMAS" word-count ] map-sum ;
    
    : origin-adistances ( rows origins line-quot: ( rows origin -- line ) -- origin-adistances-assoc )
      with zip-with
      "MAS" "SAM" [ '[ [ _ subseq-indices ] map-values ] ] bi@ bi append
      harvest-values
      [ [ 1 + ] map ] map-values ; inline
    
    : a-coords ( origin-adistances coord-quot: ( adistance -- row-delta col-delta ) -- coords )
      '[ first2 [ @ 2array v+ ] with map ] map-concat ; inline
    
    : slash-a-coords ( rows -- coords )
      dup slash-origins [ slash ] origin-adistances
      [ [ 0 swap - ] keep ] a-coords ;
    
    : backslash-a-coords ( rows -- coords )
      dup backslash-origins [ backslash ] origin-adistances
      [ dup ] a-coords ;
    
    : part2 ( -- n )
      get-input [ slash-a-coords ] [ backslash-a-coords ] bi
      intersect length ;
    

    Better viewed on GitHub.

  • Uiua

    This one was nice. The second part seemed quite daunting at first but wasn't actually that hard in the end.

    Run with example input here

    Row    ← βŒ• "XMAS"
    RevRow ← βŒ•"SAMX"
    Sum    ← /+/+
    Count  ← +∩SumβŠƒRow RevRow
    
    PartOne ← (
      &rs ∞ &fo "input-4.txt"
      βŠœβˆ˜β‰ @\n.
      βŠ™+⟜∩CountβŸœβ‰ # horizontal and vertical search
      ⟜(/+⧈(Countβ‰β‰‘β¬š@ ↻⇑⧻.)4)
      /+⧈(Countβ‰β‰‘β¬š@ ↻¯⇑⧻.)4
      ++
    )
    
    Mask ← Β°βŠšΓ—2⇑5
    # Create variations of X-MAS
    Vars ← (
      ["M S"
       " A "
       "M S"]
      ≑♭[βˆ©βŸœβ‰]β‰‘β‡Œ.
      Mask
      ⊏0βŠžβ–½Β€
    )
    
    PartTwo ← (
      &rs ∞ &fo "input-4.txt"
      βŠœβˆ˜β‰ @\n.
      ⧈(/+β™­βŠžβ‰βŠ™Β€Varsβ–½Maskβ™­)3_3
      Sum
    )
    
    &p "Day 4:"
    &pf "Part 1: "
    &p PartOne
    &pf "Part 2: "
    &p PartTwo
    
  • Rust

    Ugh. Spent way too long on today's. Should have just used my own grid structure from last year. I will likely refactor to use that. Even though it's likely a super slow implementation, the convenience of dealing with it is better than shoehorning in the grid::Grid<T> from that crate.

    solution (no supporting code)
    use grid::Grid;
    
    use crate::shared::{
        grid2d::{iter_diag_nesw, iter_diag_nwse, Point},
        util::read_lines,
    };
    
    fn parse_grid(input: &[String]) -> Grid<u8> {
        let cols = input.first().unwrap().len();
        Grid::from_vec(
            input
                .iter()
                .flat_map(|row| row.chars().map(|c| c as u8).collect::<Vec<u8>>())
                .collect(),
            cols,
        )
    }
    
    fn part1(grid: &Grid<u8>) -> usize {
        let mut xmas_count = 0;
        let rows = grid
            .iter_rows()
            .map(|d| String::from_utf8(d.copied().collect()).unwrap());
        let cols = grid
            .iter_cols()
            .map(|d| String::from_utf8(d.copied().collect()).unwrap());
        for diag in iter_diag_nesw(grid)
            .chain(iter_diag_nwse(grid))
            .filter_map(|d| {
                if d.len() >= 4 {
                    Some(String::from_utf8(d.clone()).unwrap())
                } else {
                    None
                }
            })
            .chain(rows)
            .chain(cols)
        {
            xmas_count += diag.matches("XMAS").count() + diag.matches("SAMX").count()
        }
        xmas_count
    }
    
    fn part2(grid: &Grid<u8>) -> usize {
        let mut xmas_count = 0;
        let valid = [
            [b'M', b'M', b'S', b'S'],
            [b'M', b'S', b'S', b'M'],
            [b'S', b'M', b'M', b'S'],
            [b'S', b'S', b'M', b'M'],
        ];
        for x in 1..grid.cols() - 1 {
            for y in 1..grid.rows() - 1 {
                if grid.get(y, x) == Some(&b'A')
                    && valid.contains(
                        &(Point::new(x as isize, y as isize)
                            .diagonal_neighbors(grid)
                            .map(|i| i.unwrap_or(0))),
                    )
                {
                    xmas_count += 1;
                }
            }
        }
        xmas_count
    }
    
    pub fn solve() {
        let input = read_lines("inputs/day04.txt");
        let grid = parse_grid(&input);
        println!("Part 1: {}", part1(&grid));
        println!("Part 2: {}", part2(&grid));
    }
    

    And here's a link to the Github if you care to see the gross supporting code :D

  • Nim

    import ../aoc, strutils
    
    type
      Cell* = tuple[x,y:int]
    
    #the 8 grid direction
    const directions : array[8, Cell] = [
      (1, 0), (-1, 0),
      (0, 1), ( 0,-1),
      (1, 1), (-1,-1),
      (1,-1), (-1, 1)
    ]
    
    const xmas = "XMAS"
    
    #part 1
    proc searchXMAS*(grid:seq[string], x,y:int):int =
      #search in all 8 directions (provided we can find a full match in that direction)
      let w = grid[0].len
      let h = grid.len
      
      for dir in directions:
        # check if XMAS can even fit
        let xEnd = x + dir.x * 3
        let yEnd = y + dir.y * 3
        if xEnd < 0 or xEnd >= w or
           yEnd < 0 or yEnd >= h:
          continue;
        
        #step along direction
        var matches = 0
        for s in 0..3:
          if grid[y + dir.y * s][x + dir.x * s] == xmas[s]:
            inc matches
            
        if matches == xmas.len:
          inc result
    
    #part 2
    proc isMAS(grid:seq[string], c, o:Cell):bool=
      let ca : Cell = (c.x+o.x, c.y+o.y)
      let cb : Cell = (c.x-o.x, c.y-o.y)
      let a = grid[ca.y][ca.x]
      let b = grid[cb.y][cb.x]
      (a == 'M' and b == 'S') or (a == 'S' and b == 'M')
    
    proc searchCrossMAS*(grid:seq[string], x,y:int):bool =
      grid[y][x] == 'A' and
      grid.isMAS((x,y), (1,1)) and
      grid.isMAS((x,y), (1,-1))
    
    proc solve*(input:string): array[2,int] =
      let grid = input.splitLines
      let w = grid[0].len
      let h = grid.len
      
      #part 1
      for y in 0..<h:
        for x in 0..<w:
          result[0] += grid.searchXMAS(x, y)
      
      #part 2, skipping borders
      for y in 1..<h-1:
        for x in 1..<w-1:
          result[1] += (int)grid.searchCrossMAS(x, y)
    

    Part 1 was done really quickly. Part 2 as well, but the result was not accepted...

    Turns out +MAS isn't actually a thing :P

  • C

    What can I say, bunch of for loops! I add a 3 cell border to avoid having to do bounds checking in the inner loops.

    Code
    #include "common.h"
    #define GZ 146
    
    int main(int argc, char **argv) {
    	static char g[GZ][GZ];
    	static const char w[] = "XMAS";
    	int p1=0,p2=0, x,y, m,i;
    
    	if (argc > 1) DISCARD(freopen(argv[1], "r", stdin));
    	for (y=3; y<GZ && fgets(g[y]+3, GZ-3, stdin); y++) ;
    
    	for (y=3; y<GZ-3; y++)
    	for (x=3; x<GZ-3; x++) {
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y][x+i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x+i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x+i]==w[i];} p1+=m;
    
    		p2 += g[y+1][x+1]=='A' &&
    		      ((g[y][x]  =='M' && g[y+2][x+2]=='S')  ||
    		       (g[y][x]  =='S' && g[y+2][x+2]=='M')) &&
    		      ((g[y+2][x]=='M' && g[y][x+2]  =='S')  ||
    		       (g[y+2][x]=='S' && g[y][x+2]  =='M'));
    	}
    
    	printf("04: %d %d\n", p1, p2);
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day04.c

  • Rust

    I had a hunch about part two that didn't pay off, so I over-coded this instead of just using an array of arrays.

    use std::{fs, str::FromStr};
    
    use color_eyre::eyre::{Report, Result};
    
    #[derive(Debug, Copy, Clone)]
    enum Direction {
        N,
        NE,
        E,
        SE,
        S,
        SW,
        W,
        NW,
    }
    
    impl Direction {
        fn all() -> &'static [Direction] {
            &[
                Direction::N,
                Direction::NE,
                Direction::E,
                Direction::SE,
                Direction::S,
                Direction::SW,
                Direction::W,
                Direction::NW,
            ]
        }
    }
    
    #[derive(Debug, PartialEq, Eq)]
    struct WordSearch {
        grid: Vec<char>,
        width: usize,
        height: usize,
    }
    
    impl FromStr for WordSearch {
        type Err = Report;
    
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let grid: Vec<_> = s.chars().filter(|&ch| ch != '\n').collect();
            let width = s
                .chars()
                .position(|ch| ch == '\n')
                .ok_or_else(|| Report::msg("grid width cannot be zero, or one line"))?;
            let height = grid.len() / width;
            Ok(Self {
                grid,
                width,
                height,
            })
        }
    }
    
    impl WordSearch {
        fn neighbour(&self, i: usize, dir: Direction) -> Option<usize> {
            let width = self.width;
            let length = self.grid.len();
            use Direction::*;
            match dir {
                N if i >= width => Some(i - width),
                NE if i >= width && i % width != width - 1 => Some(i - width + 1),
                E if i % width != width - 1 => Some(i + 1),
                SE if i + width + 1 < length && i % width != width - 1 => Some(i + width + 1),
                S if i + width < length => Some(i + width),
                SW if i + width - 1 < length && i % width != 0 => Some(i + width - 1),
                W if i % width != 0 => Some(i - 1),
                NW if i >= width && i % width != 0 => Some(i - width - 1),
                _ => None,
            }
        }
    
        fn word_count(&self, word: &str) -> Result<usize> {
            let mut found = 0;
            for i in 0..self.grid.len() {
                for dir in Direction::all() {
                    if self.word_present(word, i, *dir) {
                        found += 1;
                    }
                }
            }
            Ok(found)
        }
    
        fn x_count(&self) -> Result<usize> {
            let mut found = 0;
            for i in 0..self.grid.len() {
                if self.x_present(i) {
                    found += 1;
                }
            }
            Ok(found)
        }
    
        fn word_present(&self, word: &str, location: usize, dir: Direction) -> bool {
            let mut next = Some(location);
            for ch in word.chars() {
                let i = if let Some(i) = next {
                    i
                } else {
                    // Off the edge
                    return false;
                };
    
                if self.grid[i] != ch {
                    return false;
                }
                next = self.neighbour(i, dir);
            }
            true
        }
    
        fn x_present(&self, location: usize) -> bool {
            if self.grid.get(location) != Some(&'A') {
                return false;
            }
            let diags = [
                (Direction::NE, Direction::SW),
                (Direction::NW, Direction::SE),
            ];
            diags.iter().all(|(dir_a, dir_b)| {
                let Some(a_idx) = self.neighbour(location, *dir_a) else {
                    return false;
                };
                let Some(b_idx) = self.neighbour(location, *dir_b) else {
                    return false;
                };
                let a = self.grid[a_idx];
                let b = self.grid[b_idx];
                (a == 'M' && b == 'S') || (b == 'M' && a == 'S')
            })
        }
    }
    
    fn part1(filepath: &str) -> Result<usize> {
        let input = fs::read_to_string(filepath)?;
        let grid = WordSearch::from_str(&input)?;
        grid.word_count("XMAS")
    }
    
    fn part2(filepath: &str) -> Result<usize> {
        let input = fs::read_to_string(filepath)?;
        let grid = WordSearch::from_str(&input)?;
        grid.x_count()
    }
    
    fn main() -> Result<()> {
        color_eyre::install()?;
    
        println!("Part 1: {}", part1("d04/input.txt")?);
        println!("Part 2: {}", part2("d04/input.txt")?);
        Ok(())
    }
    
  • python

    solution
    import aoc
    
    def setup():
        return (aoc.get_lines(4, padded=(True, '.', 3)), 0)
    
    def one():
        lines, acc = setup()
        for row, l in enumerate(lines):
            for col, c in enumerate(l):
                if c == 'X':
                    w = l[col - 3:col + 1]
                    e = l[col:col + 4]
                    n = c + lines[row - 1][col] + \
                        lines[row - 2][col] + lines[row - 3][col]
                    s = c + lines[row + 1][col] + \
                        lines[row + 2][col] + lines[row + 3][col]
                    nw = c + lines[row - 1][col - 1] + \
                        lines[row - 2][col - 2] + lines[row - 3][col - 3]
                    ne = c + lines[row - 1][col + 1] + \
                        lines[row - 2][col + 2] + lines[row - 3][col + 3]
                    sw = c + lines[row + 1][col - 1] + \
                        lines[row + 2][col - 2] + lines[row + 3][col - 3]
                    se = c + lines[row + 1][col + 1] + \
                        lines[row + 2][col + 2] + lines[row + 3][col + 3]
                    for word in [w, e, n, s, nw, ne, sw, se]:
                        if word in ['XMAS', 'SAMX']:
                            acc += 1
        print(acc)
    
    def two():
        lines, acc = setup()
        for row, l in enumerate(lines):
            for col, c in enumerate(l):
                if c == 'A':
                    l = lines[row - 1][col - 1] + c + lines[row + 1][col + 1]
                    r = lines[row + 1][col - 1] + c + lines[row - 1][col + 1]
                    if l in ['MAS', 'SAM'] and r in ['MAS', 'SAM']:
                        acc += 1
        print(acc)
    
    one()
    two()
    
  • C#

    public class Day04 : Solver
    {
      private int width, height;
      private char[,] data;
    
      public void Presolve(string input) {
        var lines = input.Trim().Split("\n").ToList();
        height = lines.Count;
        width = lines[0].Length;
        data = new char[height, width];
        for (int i = 0; i < height; i++) {
          for (int j = 0; j < width; j++) {
            data[i, j] = lines[i][j];
          }
        }
      }
    
      private static readonly string word = "XMAS";
    
      public string SolveFirst()
      {
        int counter = 0;
        for (int start_i = 0; start_i < height; start_i++) {
          for (int start_j = 0; start_j < width; start_j++) {
            if (data[start_i, start_j] != word[0]) continue;
            for (int di = -1; di <= 1; di++) {
              for (int dj = -1; dj <= 1; dj++) {
                if (di == 0 && dj == 0) continue;
                int end_i = start_i + di * (word.Length - 1);
                int end_j = start_j + dj * (word.Length - 1);
                if (end_i < 0 || end_j < 0 || end_i >= height || end_j >= width) continue;
                for (int k = 1; k < word.Length; k++) {
                  if (data[start_i + di * k, start_j + dj * k] != word[k]) break;
                  if (k == word.Length - 1) counter++;
                }
              }
            }
          }
        }
        return counter.ToString();
      }
    
      public string SolveSecond()
      {
        int counter = 0;
        for (int start_i = 1; start_i < height - 1; start_i++) {
          for (int start_j = 1; start_j < width - 1; start_j++) {
            if (data[start_i, start_j] != 'A') continue;
            int even_mas_starts = 0;
            for (int di = -1; di <= 1; di++) {
              for (int dj = -1; dj <= 1; dj++) {
                if (di == 0 && dj == 0) continue;
                if ((di + dj) % 2 != 0) continue;
                if (data[start_i + di, start_j + dj] != 'M') continue;
                if (data[start_i - di, start_j - dj] != 'S') continue;
                even_mas_starts++;
              }
            }
            if (even_mas_starts == 2) counter++;
          }
        }
        return counter.ToString();
      }
    }
    
  • I tried to think of some clever LINQ to do this one, but was blanking entirely.

    So naΓ―ve search it is.

    C#
    string wordsearch = "";
    int width;
    int height;
    
    public void Input(IEnumerable<string> lines)
    {
      wordsearch = string.Join("", lines);
      height = lines.Count();
      width = lines.First().Length;
    }
    
    public void Part1()
    {
      int words = 0;
      for (int y = 0; y < height; y++)
        for (int x = 0; x < width; x++)
          words += SearchFrom(x, y);
    
      Console.WriteLine($"Words: {words}");
    }
    public void Part2()
    {
      int words = 0;
      for (int y = 1; y < height - 1; y++)
        for (int x = 1; x < width - 1; x++)
          words += SearchCross(x, y);
    
      Console.WriteLine($"Crosses: {words}");
    }
    
    public int SearchFrom(int x, int y)
    {
      char at = wordsearch[y * width + x];
      if (at != 'X')
        return 0;
    
      int words = 0;
      for (int ydir = -1; ydir <= 1; ++ydir)
        for (int xdir = -1; xdir <= 1; ++xdir)
        {
          if (xdir == 0 && ydir == 0)
            continue;
    
          if (SearchWord(x, y, xdir, ydir))
            words++;
        }
    
      return words;
    }
    
    private readonly string word = "XMAS";
    public bool SearchWord(int x, int y, int xdir, int ydir)
    {
      int wordit = 0;
      while (true)
      {
        char at = wordsearch[y * width + x];
        if (at != word[wordit])
          return false;
    
        if (wordit == word.Length - 1)
          return true;
    
        wordit++;
    
        x += xdir;
        y += ydir;
    
        if (x < 0 || y < 0 || x >= width || y >= height)
          return false;
      }
    }
    
    public int SearchCross(int x, int y)
    {
      if (x == 0 || y == 0 || x == width - 1 || y == width - 1)
        return 0;
    
      char at = wordsearch[y * width + x];
      if (at != 'A')
        return 0;
    
      int found = 0;
      for (int ydir = -1; ydir <= 1; ++ydir)
        for (int xdir = -1; xdir <= 1; ++xdir)
        {
          if (xdir == 0 || ydir == 0)
            continue;
    
          if (wordsearch[(y + ydir) * width + (x + xdir)] != 'M')
            continue;
          if (wordsearch[(y - ydir) * width + (x - xdir)] != 'S')
            continue;
    
          found++;
        }
    
      if (found == 2)
        return 1;
    
      return 0;
    }
    
  • Rust

    One of those with running through tricky grid indices. The vector types from the euclid crate helped in dealing with positions.

    Code
    use euclid::{vec2, default::*};
    
    fn count_xmas(grid: &[&[u8]], pos: (usize, usize)) -> u32 {
        if grid[pos.1][pos.0] != b'X' {
            return 0
        }
    
        let bounds = Rect::new(Point2D::origin(), Size2D::new(grid[0].len() as i32, grid.len() as i32));
        const DIRS: [Vector2D<i32>; 8] = [
            vec2(1, 0), vec2(-1, 0), vec2(0, 1), vec2(0, -1),
            vec2(1, 1), vec2(1, -1), vec2(-1, 1), vec2(-1, -1),
        ];
        let mut count = 0;
        for dir in DIRS {
            let mut cur = Point2D::from(pos).to_i32();
            let mut found = true;
            for letter in [b'M', b'A', b'S'] {
                cur += dir;
                if !bounds.contains(cur) || grid[cur.y as usize][cur.x as usize] != letter {
                    found = false;
                    break
                }
            }
            if found {
                count += 1;
            }
        }
        count
    }
    
    fn part1(input: String) {
        let grid = input.lines().map(|l| l.as_bytes()).collect::<Vec<_>>();    
        let count = (0..grid.len()).map(|y| {
                (0..grid[y].len()).map(|x| count_xmas(&grid, (x, y))).sum::<u32>()
            })
            .sum::<u32>();
        println!("{count}");
    }
    
    fn is_x_mas(grid: &[&[u8]], pos: (usize, usize)) -> bool {
        if grid[pos.1][pos.0] != b'A' {
            return false
        }
    
        const DIRS: [Vector2D<i32>; 4] = [vec2(1, -1), vec2(1, 1), vec2(-1, 1), vec2(-1, -1)];
        let pos = Point2D::from(pos).to_i32();
        (0..4).any(|d| {
            let m_pos = [pos + DIRS[d], pos + DIRS[(d + 1) % 4]]; // 2 adjacent positions of M
            let s_pos = [pos + DIRS[(d + 2) % 4], pos + DIRS[(d + 3) % 4]]; // others S
            m_pos.iter().all(|p| grid[p.y as usize][p.x as usize] == b'M') &&
            s_pos.iter().all(|p| grid[p.y as usize][p.x as usize] == b'S')
        })
    }
    
    fn part2(input: String) {
        let grid = input.lines().map(|l| l.as_bytes()).collect::<Vec<_>>();    
        let count = (1..grid.len() - 1).map(|y| {
                (1..grid[y].len() - 1).filter(|&x| is_x_mas(&grid, (x, y))).count()
            })
            .sum::<usize>();
        println!("{count}");
    }
    
    util::aoc_main!();
    

    (also on github)

  • Kotlin

    fun part1(input: String): Int {
        return countWordOccurrences(input.lines())
    }
    
    fun part2(input: String): Int {
        val grid = input.lines().map(String::toList)
        var count = 0
        for (row in 1..grid.size - 2) {
            for (col in 1..grid[row].size - 2) {
                if (grid[row][col] == 'A') {
                    count += countCrossMatch(grid, row, col)
                }
            }
        }
        return count
    }
    
    private fun countCrossMatch(grid: List<List<Char>>, row: Int, col: Int): Int {
        val surroundingCorners = listOf(
            grid[row - 1][col - 1], // upper left
            grid[row - 1][col + 1], // upper right
            grid[row + 1][col - 1], // lower left
            grid[row + 1][col + 1], // lower right
        )
        // no matches:
        //   M S   S M
        //    A     A
        //   S M   M S
        return if (surroundingCorners.count { it == 'M' } == 2
            && surroundingCorners.count { it == 'S' } == 2
            && surroundingCorners[0] != surroundingCorners[3]
        ) 1 else 0
    }
    
    private fun countWordOccurrences(matrix: List<String>): Int {
        val rows = matrix.size
        val cols = if (rows > 0) matrix[0].length else 0
        val directions = listOf(
            Pair(0, 1),   // Horizontal right
            Pair(1, 0),   // Vertical down
            Pair(1, 1),   // Diagonal down-right
            Pair(1, -1),  // Diagonal down-left
            Pair(0, -1),  // Horizontal left
            Pair(-1, 0),  // Vertical up
            Pair(-1, -1), // Diagonal up-left
            Pair(-1, 1)   // Diagonal up-right
        )
    
        fun isWordAt(row: Int, col: Int, word: String, direction: Pair<Int, Int>): Boolean {
            val (dx, dy) = direction
            for (i in word.indices) {
                val x = row + i * dx
                val y = col + i * dy
                if (x !in 0 until rows || y !in 0 until cols || matrix[x][y] != word[i]) {
                    return false
                }
            }
            return true
        }
    
        var count = 0
    
        for (row in 0 until rows) {
            for (col in 0 until cols) {
                for (direction in directions) {
                    if (isWordAt(row, col, "XMAS", direction)) {
                        count++
                    }
                }
            }
        }
    
        return count
    }
    
  • C#

    namespace Day04;
    
    static class Program
    {
        public record struct Point(int Row, int Col);
    
        static void Main(string[] args)
        {
            var sample = File.ReadAllLines("sample.txt");
            var data = File.ReadAllLines("data.txt");
    
            Console.WriteLine($"Part 1 (sample): {SolvePart1(sample)}");
            Console.WriteLine($"Part 1 (data): {SolvePart1(data)}");
    
            Console.WriteLine($"Part 2 (sample): {SolvePart2(sample)}");
            Console.WriteLine($"Part 2 (data): {SolvePart2(data)}");
        }
    
        private static readonly string Search = "XMAS";
    
        private static readonly Func<Point, Point>[] DirectionalMoves =
        {
            p => new Point(p.Row + 1, p.Col),
            p => new Point(p.Row + 1, p.Col + 1),
            p => new Point(p.Row, p.Col + 1),
            p => new Point(p.Row - 1, p.Col + 1),
            p => new Point(p.Row - 1, p.Col),
            p => new Point(p.Row - 1, p.Col - 1),
            p => new Point(p.Row, p.Col - 1),
            p => new Point(p.Row + 1, p.Col - 1),
        };
    
        private static readonly Func<Point, Point>[] ForwardSlashMoves =
        {
            p => new Point(p.Row - 1, p.Col - 1),
            p => new Point(p.Row + 1, p.Col + 1),
        };
        
        private static readonly Func<Point, Point>[] BackSlashMoves =
        {
            p => new Point(p.Row + 1, p.Col - 1),
            p => new Point(p.Row - 1, p.Col + 1),
        };
    
        static long SolvePart1(string[] data)
        {
            return Enumerable
                .Range(0, data.Length)
                .SelectMany(row => Enumerable.Range(0, data[row].Length)
                    .Select(col => new Point(row, col)))
                .Where(p => IsMatch(data, p, Search[0]))
                .Sum(p => DirectionalMoves
                    .Count(move => DeepMatch(data, move(p), move, Search, 1)));
        }
    
        static long SolvePart2(string[] data)
        {
            return Enumerable
                .Range(0, data.Length)
                .SelectMany(row => Enumerable.Range(0, data[row].Length)
                    .Select(col => new Point(row, col)))
                .Where(p => IsMatch(data, p, 'A'))
                .Count(p => CheckDiagonalMoves(data, p, ForwardSlashMoves)
                            && CheckDiagonalMoves(data, p, BackSlashMoves));
        }
    
        static bool CheckDiagonalMoves(string[] data, Point p, Func<Point, Point>[] moves)
            => (IsMatch(data, moves[0](p), 'S') && IsMatch(data, moves[1](p), 'M'))
               || (IsMatch(data, moves[0](p), 'M') && IsMatch(data, moves[1](p), 'S'));
    
        static bool DeepMatch(string[] data, Point p, Func<Point, Point> move, string search, int searchIndex) =>
            (searchIndex >= search.Length) ? true :
            (!IsMatch(data, p, search[searchIndex])) ? false :
            DeepMatch(data, move(p), move, search, searchIndex + 1);
    
        static bool IsMatch(string[] data, Point p, char searchChar)
            => IsInBounds(data, p) && (data[p.Row][p.Col] == searchChar);
    
        static bool IsInBounds(string[] data, Point p) =>
            (p.Row >= 0) && (p.Col >= 0) && (p.Row < data.Length) && (p.Col < data[0].Length);
    }
    
  • Go

    Just a bunch of ifs and bounds checking. Part 2 was actually simpler.

    Code
    func part1(W [][]rune) {
    	m := len(W)
    	n := len(W[0])
    	xmasCount := 0
    
    	for i := 0; i < m; i++ {
    		for j := 0; j < n; j++ {
    			if W[i][j] != 'X' {
    				continue
    			}
    			if j < n-3 && W[i][j+1] == 'M' && W[i][j+2] == 'A' && W[i][j+3] == 'S' {
    				// Horizontal left to right
    				xmasCount++
    			}
    			if j >= 3 && W[i][j-1] == 'M' && W[i][j-2] == 'A' && W[i][j-3] == 'S' {
    				// Horizontal right to left
    				xmasCount++
    			}
    			if i < m-3 && W[i+1][j] == 'M' && W[i+2][j] == 'A' && W[i+3][j] == 'S' {
    				// Vertical up to down
    				xmasCount++
    			}
    			if i >= 3 && W[i-1][j] == 'M' && W[i-2][j] == 'A' && W[i-3][j] == 'S' {
    				// Vertical down to up
    				xmasCount++
    			}
    			if j < n-3 && i < m-3 && W[i+1][j+1] == 'M' && W[i+2][j+2] == 'A' && W[i+3][j+3] == 'S' {
    				// Diagonal left to right and up to down
    				xmasCount++
    			}
    			if j >= 3 && i < m-3 && W[i+1][j-1] == 'M' && W[i+2][j-2] == 'A' && W[i+3][j-3] == 'S' {
    				// Diagonal right to left and up to down
    				xmasCount++
    			}
    			if j < n-3 && i >= 3 && W[i-1][j+1] == 'M' && W[i-2][j+2] == 'A' && W[i-3][j+3] == 'S' {
    				// Diagonal left to right and down to up
    				xmasCount++
    			}
    			if j >= 3 && i >= 3 && W[i-1][j-1] == 'M' && W[i-2][j-2] == 'A' && W[i-3][j-3] == 'S' {
    				// Diagonal right to left and down to up
    				xmasCount++
    			}
    		}
    	}
    
    	fmt.Println(xmasCount)
    }
    
    func part2(W [][]rune) {
    	m := len(W)
    	n := len(W[0])
    	xmasCount := 0
    
    	for i := 0; i <= m-3; i++ {
    		for j := 0; j <= n-3; j++ {
    			if W[i+1][j+1] != 'A' {
    				continue
    			}
    			if W[i][j] == 'M' && W[i][j+2] == 'M' && W[i+2][j] == 'S' && W[i+2][j+2] == 'S' {
    				xmasCount++
    			} else if W[i][j] == 'M' && W[i][j+2] == 'S' && W[i+2][j] == 'M' && W[i+2][j+2] == 'S' {
    				xmasCount++
    			} else if W[i][j] == 'S' && W[i][j+2] == 'S' && W[i+2][j] == 'M' && W[i+2][j+2] == 'M' {
    				xmasCount++
    			} else if W[i][j] == 'S' && W[i][j+2] == 'M' && W[i+2][j] == 'S' && W[i+2][j+2] == 'M' {
    				xmasCount++
    			}
    		}
    	}
    
    	fmt.Println(xmasCount)
    }
    
    func main() {
    	file, _ := os.Open("input.txt")
    	defer file.Close()
    	scanner := bufio.NewScanner(file)
    
    	var W [][]rune
    	for scanner.Scan() {
    		line := scanner.Text()
    		W = append(W, []rune(line))
    	}
    
    	part1(W)
    	part2(W)
    }
    
  • Raku

    Oof, my struggle to make custom index walking paths for part 1 did not pay off for part 2.

    Solution
    sub MAIN($input) {
        my $file = (open $input).slurp;
        my @grid is List = $file.linesΒ».combΒ».list;
        my @transposedGrid is List = [Z] @grid;
        my @reversedGrid is List = @gridΒ».reverse;
        my @transposedReversedGrid is List = @transposedGridΒ».reverse;
    
        my @horizontalScanRows is List = generateScanHorizontal(@grid);
        my @transposedHorizontalScanRows is List = generateScanHorizontal(@transposedGrid);
    
        my @part-one-counts = [];
        @part-one-counts.push(count-xmas(@grid, @horizontalScanRows)); # Right
        @part-one-counts.push(count-xmas(@transposedGrid, @transposedHorizontalScanRows)); # Down
        @part-one-counts.push(count-xmas(@reversedGrid, @horizontalScanRows)); # Left
        @part-one-counts.push(count-xmas(@transposedReversedGrid, @transposedHorizontalScanRows)); # Up
    
        my @diagonalScanRows is List = generateScanDiagonal(@grid);
        my @transposedDiagonalScanRows is List = generateScanDiagonal(@transposedGrid);
        @part-one-counts.push(count-xmas(@grid, @diagonalScanRows)); # Down Right
        @part-one-counts.push(count-xmas(@grid, @diagonalScanRowsΒ».reverse)); # Up Left
        @part-one-counts.push(count-xmas(@reversedGrid, @diagonalScanRows)); # Down Left
        @part-one-counts.push(count-xmas(@reversedGrid, @diagonalScanRowsΒ».reverse)); # Up Right
    
        my $part-one-solution = @part-one-counts.sum;
        say "part 1: $part-one-solution";
    
    
        my @part-two-counts = [];
        @part-two-counts.push(countGridMatches(@grid, (<M . S>,<. A .>,<M . S>)));
        @part-two-counts.push(countGridMatches(@grid, (<S . S>,<. A .>,<M . M>)));
        @part-two-counts.push(countGridMatches(@grid, (<S . M>,<. A .>,<S . M>)));
        @part-two-counts.push(countGridMatches(@grid, (<M . M>,<. A .>,<S . S>)));
    
        my $part-two-solution = @part-two-counts.sum;
        say "part 2: $part-two-solution";
    
    }
    
    sub count-xmas(@grid, @scanRows) {
        my $xmas-count = 0;
        for @scanRows -> @scanRow {
            my $xmas-pos = 0;
            for @scanRow -> @pos {
                my $char = @grid[@pos[0]][@pos[1]];
                if "X" eq $char {
                    $xmas-pos = 1;
                }elsif <X M A S>[$xmas-pos] eq $char {
                    if $xmas-pos == 3 {
                        $xmas-pos = 0;
                        $xmas-count += 1;
                    } else {
                        $xmas-pos += 1;
                    }
                } else {
                    $xmas-pos = 0;
                }
            }
        }
        return $xmas-count;
    }
    
    sub generateScanHorizontal(@grid) {
        # Horizontal
        my $rows = @grid.elems;
        my $cols = @grid[0].elems;
        my @scanRows = ();
        for 0..^$rows -> $row {
            my @scanRow = ();
            for 0..^$cols -> $col {
                @scanRow.push(($row, $col));
            }
            @scanRows.push(@scanRow);
        }
        return @scanRows.ListΒ».List;
    }
    
    sub generateScanDiagonal(@grid) {
        # Down-right diagonal
        my $rows = @grid.elems;
        my $cols = @grid[0].elems;
        my @scanRows = ();
        for 0..^($rows + $cols - 1) -> $diag {
            my @scanRow = ();
            my $starting-row = max(-$cols + $diag + 1, 0);
            my $starting-col = max($rows - $diag - 1, 0);
            my $diag-len = min($rows - $starting-row, $cols - $starting-col);
            for 0..^$diag-len -> $diag-pos {
                @scanRow.push(($starting-row + $diag-pos, $starting-col + $diag-pos));
            }
            @scanRows.push(@scanRow);
        }
        return @scanRows.ListΒ».List;
    }
    
    sub countGridMatches(@grid, @needle) {
        my $count = 0;
        for 0..(@grid.elems - @needle.elems) -> $top {
            TOP-LEFT:
            for 0..(@grid[$top].elems - @needle[0].elems) -> $left {
                for 0..^@needle.elems -> $row-offset {
                    for 0..^@needle[$row-offset].elems -> $col-offset {
                        my $needle-char = @needle[$row-offset][$col-offset];
                        next if $needle-char eq ".";
                        next TOP-LEFT if $needle-char ne @grid[$top+$row-offset][$left+$col-offset];
                    }
                }
                $count += 1;
            }
        }
        return $count;
    }
    

    github

  • This one was a little bit of a pain. I loved it.

    TypeScript

    Solution
    import { AdventOfCodeSolutionFunction } from "./solutions";
    
    enum Direction {
        UP,
        UP_RIGHT,
        RIGHT,
        BOTTOM_RIGHT,
        BOTTOM,
        BOTTOM_LEFT,
        LEFT,
        UP_LEFT,
    };
    
    const ALL_DIRECTIONS = [
        Direction.RIGHT,
        Direction.BOTTOM_RIGHT,
        Direction.BOTTOM,
        Direction.BOTTOM_LEFT,
        Direction.LEFT,
        Direction.UP_LEFT,
        Direction.UP,
        Direction.UP_RIGHT,
    ];
    
    const check_coords = (grid: Array<Array<string>>, x: number, y: number) => {
        return y >= grid.length ||
            y < 0 ||
            x >= grid[y].length ||
            x < 0
    }
    
    const search_direction = (grid: Array<Array<string>>, x: number, y: number, direction: Direction, find: Array<string>) => {
        // exit conditions
        // no more to find
        if (find.length == 0)
            return 1; // found the end
    
        // invalid coords
        if (check_coords(grid, x, y))
            return 0;
    
        // make new mutable list
        const newFind = [...find];
        const searchChar = newFind.shift();
    
        // wrong character
        if (grid[y][x] !== searchChar)
            return 0;
    
        switch (direction) {
            case Direction.UP:
                return search_direction(grid, x, y + 1, direction, newFind);
    
            case Direction.UP_RIGHT:
                return search_direction(grid, x + 1, y + 1, direction, newFind);
    
            case Direction.RIGHT:
                return search_direction(grid, x + 1, y, direction, newFind);
    
            case Direction.BOTTOM_RIGHT:
                return search_direction(grid, x + 1, y - 1, direction, newFind);
    
            case Direction.BOTTOM:
                return search_direction(grid, x, y - 1, direction, newFind);
    
            case Direction.BOTTOM_LEFT:
                return search_direction(grid, x - 1, y - 1, direction, newFind);
    
            case Direction.LEFT:
                return search_direction(grid, x - 1, y, direction, newFind);
    
            case Direction.UP_LEFT:
                return search_direction(grid, x - 1, y + 1, direction, newFind);
    
            default:
                return 0;
        }
    }
    
    const part_1_search = (grid: Array<Array<string>>, x: number, y: number, find: Array<string>) => {
        return ALL_DIRECTIONS.reduce<number>(
            (instances, direction) =>
                instances + search_direction(grid, x, y, direction, find),
            0
        );
    }
    
    const part_2_search = (grid: Array<Array<string>>, x: number, y: number, find: Array<string>) => {
        return (
            search_direction(grid, x - 1, y + 1, Direction.BOTTOM_RIGHT, find) +
            search_direction(grid, x + 1, y + 1, Direction.BOTTOM_LEFT, find) +
            search_direction(grid, x - 1, y - 1, Direction.UP_RIGHT, find) +
            search_direction(grid, x + 1, y - 1, Direction.UP_LEFT, find)
        ) == 2 ? 1 : 0;
    }
    
    export const solution_4: AdventOfCodeSolutionFunction = (input) => {
        const grid = input.split("\n").map(st => st.trim()).map(v => v.split(""));
    
        let part_1 = 0;
        let part_2 = 0;
    
        const find_1 = "XMAS".split("");
        const find_2 = "MAS".split("");
    
        for (let y = 0; y < grid.length; y++) {
            for (let x = 0; x < grid[y].length; x++) {
                part_1 += part_1_search(grid, x, y, find_1);
                part_2 += part_2_search(grid, x, y, find_2);
            }
        }
    
        return {
            part_1,
            part_2,
        };
    }
    

    Felt like this code quality is better than what I usually output :)

  • Python

    <spoiler title>
    def read_input(path):
        with open(path) as f:
            lines = f.readlines()
            for i, line in enumerate(lines):
                ln = line.replace("\n","")
                lines[i] = ln
        return lines
    
    def find_X(lines):
        Xes = []
        for j, line in enumerate(lines):
            ind = [i for i, ltr in enumerate(line) if ltr == "X"]
            for i in ind:
                Xes.append((j,i))
        return Xes
    
    def find_M(lines, x, dim):
        # Check for Ms
        M_dirs = []
        for i in [-1, 0, 1]:
            x_ind = x[0] + i
            if x_ind>=0 and x_ind<dim:
                for j in [-1, 0, 1]:
                    y_ind = x[1]+j
                    if y_ind>=0 and y_ind<dim:
                        if lines[x_ind][y_ind] == "M":
                            M = [(x_ind, y_ind), (i,j)]
                            M_dirs.append(M)
        return M_dirs
    
    def check_surroundings(loc, lines, check_char, direction):
        max = len(lines)-1
        check_lock = [loc[i]+direction[i] for i in range(len(loc))]
        if all(i>=0 and i<=max for i in check_lock) and check_char in str(lines[check_lock[0]][check_lock[1]]):
            return True
        else:
            return False
    
    def part_one(lines):
        ans = 0 
    
        X = find_X(lines)
        dim = len(lines[0])
        for x in X:
            M = find_M(lines, x, dim)
            for m in M:
                loc = m[0]
                dir = m[1]
                
                if not check_surroundings(loc, lines, 'A', dir):
                    continue
                
                loc = [loc[0]+dir[0], loc[1]+dir[1]]
                if not all(i>=0 and i<=dim-1 for i in loc):
                    continue
                if not check_surroundings(loc, lines, 'S', dir):
                    continue
                
                ans+=1
        return ans
    
    def extract_square(lines, loc):
        str = ""
        for i in range(-1,2,1):
            for j in range(-1,2,1):
                x_ind = loc[0]+i
                y_ind = loc[1]+j
                if not all(p>=0 and p<=len(lines[0])-1 for p in [x_ind, y_ind]):
                    raise ValueError("The given lock is at the edge of the grid and therefore will not produce a square")
                str += lines[x_ind][y_ind]
        return str
    
    def check_square(square):
        if not square[4]=="A":
            return False
        elif not ((square[0]=="M" and square[8]=="S") or (square[0]=="S" and square[8]=="M")):
            return False
        elif not ((square[2]=="M" and square[6]=="S") or (square[2]=="S" and square[6]=="M")):
            return False
        else: return True
    
    def part_two(lines):
        ans = 0
        dim = len(lines[0])
        for i in range(1,dim-1):
            for j in range(1,dim-1):
                square = extract_square(lines, (i,j))
                if check_square(square):
                    ans += 1
        return ans
    
    path = r'Day_4\input.txt'
    lines = read_input(path)
    print("Answer part 1: ", part_one(lines))
    print("Answer part 2: ", part_two(lines))
    
  • Julia

    Had some time to clean up the code today since the solution was quite straight forward after making a plan on how to approach it.

    spoiler
    function readWordSearch(inputFile::String)::Matrix{Char}
    	f = open(inputFile,"r")
    	lines::Vector{String} = readlines(f)
    	close(f)
    	wordSearch = Matrix{Char}(undef,length(lines),length(lines))
    	for (i,line) in enumerate(lines)
    		wordSearch[i,:] = collect(line)
    	end
    	return wordSearch
    end
    
    function countXMASAppearances(wS::Matrix{Char})::Int
    	appearanceCount::Int = 0
    	for i=1 : size(wS)[1] #lines
    		for j=1 : size(wS)[2] #columns
    			wS[i,j]!='X' ? continue : nothing #continue if char is not X
    			#if char is X, check surrounding area
    			# check horizontals
    			#left
    			j>=4 ? (wS[i,j-1]*wS[i,j-2]*wS[i,j-3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#right
    			j<=size(wS)[2]-3 ? (wS[i,j+1]*wS[i,j+2]*wS[i,j+3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			# check verticals
    			#up
    			i>=4 ? (wS[i-1,j]*wS[i-2,j]*wS[i-3,j]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#down
    			i<=size(wS)[1]-3 ? (wS[i+1,j]*wS[i+2,j]*wS[i+3,j]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			# check diagonals
    			#left up
    			i>=4 && j>=4 ? (wS[i-1,j-1]*wS[i-2,j-2]*wS[i-3,j-3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#right up
    			i>=4 && j<=size(wS)[2]-3 ? (wS[i-1,j+1]*wS[i-2,j+2]*wS[i-3,j+3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#left down
    			i<=size(wS)[1]-3 && j>=4 ? (wS[i+1,j-1]*wS[i+2,j-2]*wS[i+3,j-3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    			#right down
    			i<=size(wS)[1]-3 && j<=size(wS)[2]-3 ? (wS[i+1,j+1]*wS[i+2,j+2]*wS[i+3,j+3]=="MAS" ? appearanceCount+=1 : nothing) : nothing
    		end
    	end
    	return appearanceCount
    end
    
    function countX_MASAppearances(wordSearch::Matrix{Char})::Int
    	appearances::Int = 0
    	for l=2 : size(wordSearch)[1]-1
    		for c=2 : size(wordSearch)[2]-1
    			wordSearch[l,c]!='A' ? continue : nothing
    			checkArr = [wordSearch[l-1,c-1],wordSearch[l-1,c+1],wordSearch[l+1,c-1],wordSearch[l+1,c+1]]
    			if checkArr in [['M','M','S','S'],['M','S','M','S'],['S','S','M','M'],['S','M','S','M']]
    				appearances += 1
    			end
    		end
    	end
    	return appearances
    end
    
    wordSearch::Matrix{Char} = readWordSearch(inputFile
    prinltn("part 1 appearances: $(countXMASAppearances(wordSearch))")
    prinltn("part 2 appearances: $(countX_MASAppearances(wordSearch))")
    

  • Python

    Essentially I'm extracting strings from the word search and compare them to the desired value. For part one that means extracting from an X in eight directions. Because I'm reading from the central X outwards, I don't need to reverse any of them.
    Part two reads two strings in an X-shape around the coordinates of each X. The resulting strings are filtered down to include only "MAS" and "SAM". If there are exactly two strings we found an X-MAS.

    from pathlib import Path
    
    
    def parse_input(input: str) -> list[str]:
        return input.strip().splitlines()
    
    
    def extract_strings_one(m: int, n: int, haystack: list[str], l: int = 4) -> list[str]:
        result = []
        # Right
        if m + l <= len(haystack[n]):
            result.append(haystack[n][m : m + l])
        # Up-Right
        if m + l <= len(haystack[n]) and n > l - 2:
            result.append("".join([haystack[n - i][m + i] for i in range(l)]))
        # Up
        if n > l - 2:
            result.append("".join([haystack[n - i][m] for i in range(l)]))
        # Up-Left
        if m > l - 2 and n > l - 2:
            result.append("".join([haystack[n - i][m - i] for i in range(l)]))
        # Left
        if m > l - 2:
            result.append("".join([haystack[n][m - i] for i in range(l)]))
        # Down-Left
        if m > l - 2 and n + l <= len(haystack):
            result.append("".join([haystack[n + i][m - i] for i in range(l)]))
        # Down
        if n + l <= len(haystack):
            result.append("".join([haystack[n + i][m] for i in range(l)]))
        # Down-Right
        if m + l <= len(haystack[n]) and n + l <= len(haystack):
            result.append("".join([haystack[n + i][m + i] for i in range(l)]))
        return result
    
    
    def extract_strings_two(m: int, n: int, haystack: list[str], d: int = 1) -> list[str]:
        result = []
        if 0 <= m - d and m + d < len(haystack[n]) and 0 <= n - d and n + d < len(haystack):
            result.append("".join([haystack[n + i][m + i] for i in range(-d, d + 1)]))
            result.append("".join([haystack[n - i][m + i] for i in range(-d, d + 1)]))
        return result
    
    
    def part_one(input: str) -> int:
        lines = parse_input(input)
        xmas_count = 0
        for i, line in enumerate(lines):
            x = line.find("X", 0)
            while x != -1:
                xmas_count += len(
                    list(filter(lambda s: s == "XMAS", extract_strings_one(x, i, lines)))
                )
                x = line.find("X", x + 1)
        return xmas_count
    
    
    def part_two(input: str) -> int:
        lines = parse_input(input)
        x_mas_count = 0
        for i, line in enumerate(lines[1:-1], 1):
            a = line.find("A", 0)
            while a != -1:
                if (
                    len(
                        list(
                            filter(
                                lambda s: s in ("MAS", "SAM"),
                                extract_strings_two(a, i, lines),
                            )
                        )
                    )
                    == 2
                ):
                    x_mas_count += 1
                a = line.find("A", a + 1)
        return x_mas_count
    
    
    if __name__ == "__main__":
        input = Path("input").read_text("utf-8")
        print(part_one(input))
        print(part_two(input))
    
  • Zig

    const std = @import("std");
    const List = std.ArrayList;
    
    const tokenizeScalar = std.mem.tokenizeScalar;
    const parseInt = std.fmt.parseInt;
    const print = std.debug.print;
    const eql = std.mem.eql;
    
    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    const alloc = gpa.allocator();
    
    const Point = struct {
        x: isize,
        y: isize,
        fn add(self: *const Point, point: *const Point) Point {
            return Point{ .x = self.x + point.x, .y = self.y + point.y };
        }
    };
    
    // note: i have no idea how to use this or if it's even possible
    // const DirectionType = enum(u8) { Up, Down, Left, Right, UpLeft, UpRight, DownLeft, DownRight };
    // const Direction = union(DirectionType) {
    //     up: Point = .{ .x = 0, .y = 0 },
    // };
    
    const AllDirections = [_]Point{
        .{ .x = 0, .y = -1 }, // up
        .{ .x = 0, .y = 1 }, // down
        .{ .x = -1, .y = 0 }, // left
        .{ .x = 1, .y = 0 }, // right
        .{ .x = -1, .y = -1 }, // up left
        .{ .x = 1, .y = -1 }, // up right
        .{ .x = -1, .y = 1 }, // down left
        .{ .x = 1, .y = 1 }, // down right
    };
    
    const Answer = struct {
        xmas: u32,
        mas: u32,
    };
    
    pub fn searchXmas(letters: List([]const u8), search_char: u8, position: Point, direction: Point) u32 {
        const current_char = getChar(letters, position);
        if (current_char == search_char) {
            const next = position.add(&direction);
            if (current_char == 'M') {
                return searchXmas(letters, 'A', next, direction);
            } else if (current_char == 'A') {
                return searchXmas(letters, 'S', next, direction);
            } else if (current_char == 'S') {
                return 1; // found all letters
            }
        }
        return 0;
    }
    
    pub fn countXmas(letters: List([]const u8), starts: List(Point)) u32 {
        var counter: u32 = 0;
        for (starts.items) |start| {
            for (AllDirections) |direction| {
                const next = start.add(&direction);
                counter += searchXmas(letters, 'M', next, direction);
            }
        }
        return counter;
    }
    
    pub fn countMas(letters: List([]const u8), starts: List(Point)) u32 {
        var counter: u32 = 0;
        for (starts.items) |start| {
            const a_char = getChar(letters, start) orelse continue;
            const top_left_char = getChar(letters, start.add(&AllDirections[4])) orelse continue;
            const down_right_char = getChar(letters, start.add(&AllDirections[7])) orelse continue;
            const top_right_char = getChar(letters, start.add(&AllDirections[5])) orelse continue;
            const down_left_char = getChar(letters, start.add(&AllDirections[6])) orelse continue;
    
            const tldr = [3]u8{ top_left_char, a_char, down_right_char };
            const trdl = [3]u8{ top_right_char, a_char, down_left_char };
            if ((eql(u8, &tldr, "MAS") or eql(u8, &tldr, "SAM")) and (eql(u8, &trdl, "MAS") or eql(u8, &trdl, "SAM"))) {
                counter += 1;
            }
        }
        return counter;
    }
    
    pub fn getChar(letters: List([]const u8), point: Point) ?u8 {
        if (0 > point.x or point.x >= letters.items.len) {
            return null;
        }
        const row = @as(usize, @intCast(point.x));
    
        if (0 > point.y or point.y >= letters.items[row].len) {
            return null;
        }
        const col = @as(usize, @intCast(point.y));
        return letters.items[row][col];
    }
    
    pub fn solve(input: []const u8) !Answer {
        var rows = tokenizeScalar(u8, input, '\n');
    
        var letters = List([]const u8).init(alloc);
        defer letters.deinit();
        var x_starts = List(Point).init(alloc);
        defer x_starts.deinit();
        var a_starts = List(Point).init(alloc);
        defer a_starts.deinit();
    
        var x: usize = 0;
        while (rows.next()) |row| {
            try letters.append(row);
            for (row, 0..) |letter, y| {
                if (letter == 'X') {
                    try x_starts.append(.{ .x = @intCast(x), .y = @intCast(y) });
                } else if (letter == 'A') {
                    try a_starts.append(.{ .x = @intCast(x), .y = @intCast(y) });
                }
            }
            x += 1;
        }
    
        // PART 1
        const xmas = countXmas(letters, x_starts);
    
        // PART 2
        const mas = countMas(letters, a_starts);
    
        return Answer{ .xmas = xmas, .mas = mas };
    }
    
    pub fn main() !void {
        const answer = try solve(@embedFile("input.txt"));
        print("Part 1: {d}\n", .{answer.xmas});
        print("Part 2: {d}\n", .{answer.mas});
    }
    
    test "test input" {
        const answer = try solve(@embedFile("test.txt"));
        try std.testing.expectEqual(18, answer.xmas);
    }
    
    
  • Lisp

    Not super happy with the code, but it got the job done.

    Part 1 and 2
    (defun p1-process-line (line)
      (to-symbols line))
    
    (defun found-word-h (word data i j)
      "checks for a word existing from the point horizontally to the right"
      (loop for j2 from j 
            for w in word
            when (not (eql w (aref data i j2)))
              return nil
            finally (return t)))
    
    (defun found-word-v (word data i j)
      "checks for a word existing from the point vertically down"
      (loop for i2 from i 
            for w in word
            when (not (eql w (aref data i2 j)))
              return nil
            finally (return t)))
    
    (defun found-word-d-l (word data i j)
      "checks for a word existsing from the point diagonally to the left and down"
      (destructuring-bind (n m) (array-dimensions data)
        (declare (ignorable n))
        
        (and (>= (- i (length word)) -1)
             (>= m (+ j  (length word)))
             (loop for i2 from i downto 0
                   for j2 from j
                   for w in word
                   when (not (eql w (aref data i2 j2)))
                     return nil
                   finally  (return t)))))
    
    (defun found-word-d-r (word data i j)
      "checks for a word existing from the point diagonally to the right and down"
      (destructuring-bind (n m) (array-dimensions data)
        (and (>= n (+ i (length word)))
             (>= m (+ j  (length word)))
             (loop for i2 from i
                   for j2 from j
                   for w in word
                   when (not (eql w (aref data i2 j2)))
                     return nil
                   finally  (return t)))
        ))
    
    (defun count-word-h (data word)
      "Counts horizontal matches of the word"
      (let ((word-r (reverse word))
            (word-l (length word)))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for i from 0 below n 
                sum (loop for j from 0 upto (- m word-l)
                          count (found-word-h word data i j)
                          count (found-word-h word-r data i j))))))
    
    (defun count-word-v (data word)
      "Counts vertical matches of the word"
      (let ((word-r (reverse word))
            (word-l (length word)))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for j from 0 below m 
                sum (loop for i from 0 upto (- n word-l)
                          count (found-word-v word data i j)
                          count (found-word-v word-r data i j))))))
    
    (defun count-word-d (data word)
      "Counts diagonal matches of the word"
      (let ((word-r (reverse word)))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for i from 0 below n
                sum (loop for j from 0 below m
                          count (found-word-d-l word data i j)
                          count (found-word-d-l word-r data i j)
                          count (found-word-d-r word data i j)
                          count (found-word-d-r word-r data i j)
                          )))))
    
    
    (defun run-p1 (file)
      "cares about the word xmas in any direction"
      (let ((word '(X M A S))
            (data (list-to-2d-array (read-file file #'p1-process-line))))
        (+
         (count-word-v data word)
         (count-word-h data word)
         (count-word-d data word))))
    
    
    (defun run-p2 (file) 
      "cares about an x of mas crossed with mas"
      (let ((word '(M A S))
            (word-r '(S A M))
            (data (list-to-2d-array (read-file file #'p1-process-line))))
        (destructuring-bind (n m) (array-dimensions data)
          (loop for i from 0 below (- n 2)
                sum (loop for j from 0 below (- m 2)
                          count (and (found-word-d-r word data i j)
                                     (found-word-d-l word data (+ i 2) j))
                          count (and (found-word-d-r word-r data i j)
                                     (found-word-d-l word data (+ i 2) j))
                          count (and (found-word-d-r word data i j)
                                     (found-word-d-l word-r data (+ i 2) j))
                          count (and (found-word-d-r word-r data i j)
                                     (found-word-d-l word-r data (+ i 2) j))
                            )))))
    
  • Part 1:

    with open('input') as data:
        lines = [l.strip() for l in data.readlines()]
    # Remove empty line
    class Result():
        def __init__(self):
            self.count = 0
    
    
    def analyze_lines(lines: list[str]):
        ans.count += get_rights(lines)
        ans.count += get_ups(lines)
        ans.count += get_downs(lines)
        ans.count += get_down_rights(lines)
        ans.count += get_down_lefts(lines)
        ans.count += get_up_lefts(lines)
        ans.count += get_up_rights(lines)
        for line in lines:
            ans.count += get_lefts(line)
    
    
    
    
    def get_ups(lines: list[str]) -> int:
        up_count = 0
        for i_l, line in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, char in enumerate(line):
                if char == "X":
                    result = char
                    result += "".join([lines[i_l - n][i_c] for n in range(1, 4)])
                    if result == "XMAS":
                        up_count += 1
                    else:
                        result = ""
        return up_count
    
    
    def get_downs(lines: list[str]) -> int:
        down_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join([lines[i_l + n][i_c] for n in range(1, 4)])
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_count += 1
                        result = ""
        return down_count
    
    
            
    def get_lefts(line: str) -> int:
        left_count = 0
        for i, char in enumerate(line):
            if i < 3:
                continue
            elif char == "X" and line[i-1] == "M" and line[i-2] == "A" and line[i-3] == "S":
                left_count += 1
        return left_count
    
    
    def get_rights(lines: list[str]) -> int:
        right_counts = 0
        for l in lines:
            right_counts += l.count("XMAS")
        return right_counts
    
    def get_down_rights(lines: list[str]) -> int:
        down_right_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l + n][i_c + n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_right_count += 1
                        result = ""
        return down_right_count
    
    def get_down_lefts(lines: list[str]) -> int:
        down_left_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if i_c < 3:
                    continue
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l + n][i_c - n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_left_count += 1
                        result = ""
        return down_left_count
    
    def get_up_rights(lines: list[str]) -> int:
        up_right_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l - n][i_c + n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            up_right_count += 1
                        result = ""
        return up_right_count
    
    
    def get_up_lefts(lines: list[str]) -> int:
        up_left_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, c in enumerate(l):
                if i_c < 3:
                    continue
                if c == "X":
                    result = c
                    try:
                        result += "".join(
                                [lines[i_l - n][i_c - n] for n in range(1,4)]
                                )
                    except IndexError as e:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            up_left_count += 1
                        result = ""
        return up_left_count
    
    ans = Result()
    analyze_lines(lines)
    print(ans.count)
    

    Part 2:

    with open('input') as data:
        lines = list(filter(lambda x: x != '', [l.strip() for l in data.readlines()]))
        
    xmases = 0
    for i in range(1, len(lines)):
        for j in range(1, len(lines[i])):
            if lines[i][j] == "A":
                try:
                    up_back = lines[i-1][j-1]
                    down_over = lines[i+1][j+1]
                    up_over = lines[i-1][j+1]
                    down_back = lines[i+1][j-1]
                except IndexError:
                    continue
                else:
                    if {up_back, down_over} == set("MS") and {up_over, down_back} == set("MS"):
                        xmases += 1
    
    print(xmases)
    

    I actually found part two A LOT easier than part 1.

  • Rust

    I'm a day behind on this one due to a lot of work with my job and school.

    use std::iter::zip;
    
    use crate::utils::read_lines;
    
    pub fn solution1() {
        let puzzle = read_puzzle();
    
        let horizontal_sum = puzzle
            .iter()
            .map(|line| {
                line.windows(4)
                    .filter(|window| {
                        matches!(window, [b'X', b'M', b'A', b'S'] | [b'S', b'A', b'M', b'X'])
                    })
                    .count() as u32
            })
            .sum::<u32>();
        let vertical_and_diagonal_sum = puzzle
            .windows(4)
            .map(|window| {
                count_xmas(window, (0, 0, 0, 0))
                    + count_xmas(window, (0, 1, 2, 3))
                    + count_xmas(window, (3, 2, 1, 0))
            })
            .sum::<u32>();
    
        println!(
            "XMAS count = {}",
            horizontal_sum + vertical_and_diagonal_sum
        );
    }
    
    pub fn solution2() {
        let puzzle = read_puzzle();
    
        let sum = puzzle
            .windows(3)
            .map(|window| {
                zip(
                    window[0].windows(3),
                    zip(window[1].windows(3), window[2].windows(3)),
                )
                .map(|(a, (b, c))| (a, b, c))
                .filter(|tuple| {
                    matches!(
                        tuple,
                        ([b'M', _, b'M'], [_, b'A', _], [b'S', _, b'S'])
                            | ([b'S', _, b'M'], [_, b'A', _], [b'S', _, b'M'])
                            | ([b'M', _, b'S'], [_, b'A', _], [b'M', _, b'S'])
                            | ([b'S', _, b'S'], [_, b'A', _], [b'M', _, b'M'])
                    )
                })
                .count() as u32
            })
            .sum::<u32>();
    
        println!("X-MAS count = {sum}");
    }
    
    fn count_xmas(
        window: &[Vec<u8>],
        (skip0, skip1, skip2, skip3): (usize, usize, usize, usize),
    ) -> u32 {
        zip(
            window[0].iter().skip(skip0),
            zip(
                window[1].iter().skip(skip1),
                zip(window[2].iter().skip(skip2), window[3].iter().skip(skip3)),
            ),
        )
        .map(|(a, (b, (c, d)))| (a, b, c, d))
        .filter(|tup| matches!(tup, (b'X', b'M', b'A', b'S') | (b'S', b'A', b'M', b'X')))
        .count() as u32
    }
    
    fn read_puzzle() -> Vec<Vec<u8>> {
        read_lines("src/day4/input.txt")
            .map(|line| line.into_bytes())
            .collect()
    }
    

    The standard library windows method and pattern matching have been carrying me this year so far.

  • Smalltalk

    I could have done it in 2 fns if I made them more generic, but couldn't be bothered

    day4p1: input
        | lines sum w h|
        
        sum := ('XMAS' asRegex matchesIn: input) size. "forward"
        sum := sum + ('SAMX' asRegex matchesIn: input) size. "backwards sep cause overlapping"
        
        lines := input lines.
        h := lines size.
        w := (lines at: 1) size.
        
        1 to: h-3 do: [ :p1 |
            1 to: w do: [ :p2 |
                sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: -1).
                sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: 0).
                sum := sum + (self d4diag: lines p1: p1 p2: p2 dir: 1).    
            ]
        ].
        
        ^ sum.
    
    d4diag: input p1: p1 p2: p2 dir: dir
        | reverse xm ii |
        
        xm := 'XMAS'.
        
        reverse := ((input at: p1) at: p2) = $S.
        
        0 to: 3 do: [ :i |
            ii := reverse ifTrue: [ 4 - i ] ifFalse: [ i + 1 ].
                                                        "if out of bounds, obv not possible"
            ((xm at: ii) = ((input at: p1 + i) at: i * dir + p2 ifAbsent: [^ 0])) ifFalse: [^ 0]
        ].
    
        ^ 1.
    

    Part 2

    day4p2: input
        | lines sum w h pos |
        "Find all diag mas, then check of 1 . -1 (we can look back on every -1"
        
        sum := 0.
        lines := input lines.
        h := lines size.
        w := (lines at: 1) size.
        
        1 to: h-2 do: [ :p1 |
            pos := Array new: w withAll: false.
            1 to: w do: [ :p2 |
                (self d42: lines p1: p1 p2: p2 dir: -1)
                    ifTrue: [
                        sum := sum + ((pos at: p2-2) ifTrue:[1] ifFalse:[0]).
                    ].
                
                (self d42: lines p1: p1 p2: p2 dir: 1) ifTrue: [pos at: p2 put: true].
            ]
        ].
        
        ^ sum.
    
    d42: input p1: p1 p2: p2 dir: dir
        | reverse xm ii |
        
        xm := 'MAS'.
        
        reverse := ((input at: p1) at: p2) = $S.
        
        0 to: 2 do: [ :i |
            ii := reverse ifTrue: [ 3 - i ] ifFalse: [ i + 1 ].
                                                        "if out of bounds, obv not possible"
            ((xm at: ii) = ((input at: p1 + i) at: i * dir + p2 ifAbsent: [^ false])) ifFalse: [^ false]
        ].
    
        ^ true.
    
  • Elixir

    defmodule AdventOfCode.Solution.Year2024.Day04 do
      use AdventOfCode.Solution.SharedParse
    
      defmodule Map do
        defstruct [:chars, :width, :height]
      end
    
      @impl true
      def parse(input) do
        chars = String.split(input, "\n", trim: true) |> Enum.map(&String.codepoints/1)
        %Map{chars: chars, width: length(Enum.at(chars, 0)), height: length(chars)}
      end
    
      def at(%Map{} = map, x, y) do
        cond do
          x < 0 or x >= map.width or y < 0 or y >= map.height -> ""
          true -> map.chars |> Enum.at(y, []) |> Enum.at(x, "")
        end
      end
    
      def part1(map) do
        dirs = for dx <- -1..1, dy <- -1..1, {dx, dy} != {0, 0}, do: {dx, dy}
        xmas = String.codepoints("XMAS") |> Enum.with_index() |> Enum.drop(1)
    
        for x <- 0..(map.width - 1),
            y <- 0..(map.height - 1),
            "X" == at(map, x, y),
            {dx, dy} <- dirs,
            xmas
            |> Enum.all?(fn {c, n} -> at(map, x + dx * n, y + dy * n) == c end),
            reduce: 0 do
          t -> t + 1
        end
      end
    
      def part2(map) do
        for x <- 0..(map.width - 1),
            y <- 0..(map.height - 1),
            "A" == at(map, x, y),
            (at(map, x - 1, y - 1) <> at(map, x + 1, y + 1)) in ["MS", "SM"],
            (at(map, x - 1, y + 1) <> at(map, x + 1, y - 1)) in ["MS", "SM"],
            reduce: 0 do
          t -> t + 1
        end
      end
    end
    
34 comments