((Note: this is post of mine from a different site that is about a year old, but thought I would share it here too in case it helps anyone))
Old technology is once again getting attention, and this time itâs air-conditioners made out of terracotta clay.
âShe was inspired by the Palestinian Jara, a traditional clay water container that is hung from the ceiling to cool water and cool the air. Specifically, the water contained in the hollow internal structure moves outward through the porous clay walls. With the heat of the air, it evaporates and is transformed into water vapor. This reaction absorbs heat from the surrounding air, cooling the water, the material itself and consequently the air in the room.â Forbes India In regards to Yael Issacharov.
There are two unrelated people currently being mentioned for promoting their designs using this technology; Monish Siripurapu(from India), and Yael Issacharov(from Israel).
Monish Siripurapuâs design is based off a beehive and uses a small pump to create a beautiful water fountain that both cools the air and can be used for gardening.
Yael Issacharovâs design uses no electricity, and instead relies on the naturally porous nature of the clay.
For dry and hot climates, this old technology could provide cooler air at an affordable price. The clay is readily available almost entirely world-wide, making it accessible and inexpensive.
"The humid clay traps some heat the air and the surrounding air gets cooled down to around 6-10â° C due to the process of evaporative cooling.â EcoIdeaz in regards to Monish Siripurapu
Based on this information, I am wondering if a terracotta pot and a fan would have the same effect for a small room. Here's a drawing of mine to help explain what I mean:
The principle is simple enough. Look into 'swamp coolers' or evaporative coolers. They work well with adequate airflow, until the air reaches the point where absorbing more moisture becomes less efficient, somewhere around 60-100% humidity. More airflow with low humidity air helps. The solid state/ no moving parts is what fascinate me about this design.
The wall panel one in the first left picture is also aesthetic, and modular. Makes me want to cast some terra cotta. I"m trying to think thru how one would channel the cool air in the direction one would want it to flow, without electricity or moving parts. Sort of a funnel shape leading from the cooling part, to guide the cool air in the right direction regardless of the wind's direction.
I'm sceptical of evaporative coolers. In the short term it might work well, but it increases humidity. That leads to sweating being less efficient and generally a worse situation than before.
There would need to be a way to remove moisture from the air, which ironically was the original purpose of air conditioners, not temperature.
They do not work well in already humid environments but in a hot and dry climate they do quite well. It absolutely does add to the humidity (obviously) but speaking from experience I'd rather have a evap cooler than not if my AC is out.
The largest difference in utilizing one over AC is that they rely on airflow so you need to actually ventilate the area you are cooling as compared to AC where you want a sealed space.
The main driver is power efficiency. Only thing they are doing is running a small water pump and a big fan.
Evaportaive coolers are only effective in low humidity enviroments like a desert. Unless the room is hermetically sealed, the cooler wouldn't add enough humidity into the air for you to notice.
If you use it in a high humidity environment its just not gonna work.
It's not just about losing sweat cooling. Humid air is better at conducting heat (because water is), so if the air temperature exceeds your external body temperature, then it accelerates the heat being conducted into your body.
I've only skimmed it, but Figure 1 shows their skin temperature consistently above the 31°C air temperature, so the humidity should inhibit evaporation of their sweat, which is bad for body temperature, but the humid air should still be conducting heat away from their body rather than into their body.
Check out figure 2 it shows equivalent cooling in energy units. Meaning how much energy is carried away by perspiration, and showing it for different levels of humidity. I read it as between 5-10% lower at higher humidity.
Compare that to the radiant heat difference (from 32 degrees to 22, as per the cooling chart) which cools you about 286 % more. And with convective cooling we expect even more at higher temperature differences.
(Calculated with Boltzmanns law for 310 K body temperature)
It uses a revolving chimney cowl(a no-power way to increase air-flow) attached to a terracotta clay base. Perhaps the spinner concept would work for the funnel part you were talking about?
I have no idea how it would be in this scenario, but in their intended purpose of pulling vapors out of a bathroom or whatever it is people use them for, apparently some non-moving plastic wing thing is better
Here, so they are mostly sold for on top of chimney ducts(to help pull out fumes), or fresh air ducts(to help push air in). SO my theory was to have the spinner in the wind (perhaps out a window) to help push air through the terracotta.
Good thing no one built it. It wouldnât have worked, and neighbours would have thought they were insane đ
OH! I didn't mean use it as a chimney cowl, I just meant use the rough idea of it (like putting it on it's side, so the spinner is out the window, or something, so the wind spins it and pushes air in). Though as someone has already pointed out, the spinners apparently don't help at all, so my idea would not help you either way. đ